REGULATIONS, COURSE STRUCTURE AND SYLLABUS

(Aligned with AICTE model Curriculum)

SITE 2021 REGULATIONS

For

B.Tech

in

Electrical & Electronics Engineering

With effective from the Academic Year

2021-2022

Accredited by NAAC with "A" Grade Recognised by UGC under section 2(f) &12(B) Ranked as "A" Grade by Govt. of A.P.

B. Tech Regulations

1.1 Short title and Commencement

The regulations listed under this head are common for all degree level under graduate programs (B. Tech.) offered by the college with effect from the academic year 2021-22 and they are called as "SITE21" regulations.

The regulations here under are subject to amendments as may be made by the Academic Council of the college from time to time, keeping the recommendations of the Board of Studies in view. Any or all such amendments will be effective from such date and to such batches of candidates including those already undergoing the program, as may be decided by the Academic Council.

1.2. Definitions

- a. "Commission" means University Grants Commission(UGC)
- b. "Council" means All India Council for Technical Education(AICTE)
- c. "University" Means Jawaharlal Nehru Technological University Kakinada(JNTUK)
- d. "College" means Sasi Institute of Technology & Engineering, Tadepalligudem.
- e. "Program" Means any combination of courses and /or requirements leading to award of a degree
- f. "Course" Means a subject either theory or practical identified by its course title and code number and which is normally studied in a semester.
- g. For example, (ELECTRONC DEVICES) is a course offered at third semester of B. Tech (ECT) and its code is (21ETETT3030)
- h. "Degree" means an academic degree conferred by the university upon those who complete the undergraduate curriculum
- i. "Regular Student" means student enrolled into the four year programme in the first year
- j. "Lateral entry Students" Means student enrolled into the four year programme in the second year

1.3. Academic Programs

1.3.1. Nomenclature of Programs

The nomenclature and its abbreviation given below shall continue to be used for the degree programs under the University, as required by the Council and Commission. The name of specialization shall be indicated in brackets after the abbreviation. For e.g. UG engineering degree in Mechanical Engineering program is abbreviated as B. Tech. (ME). Bachelor of Technology (B. Tech.) degree program offered in:

- 1. Artificial Intelligence & Machine Learning(AI & ML)
- 2. Civil Engineering(CE)
- 3. Computer Science and Engineering(Artificial Intelligence and Machine learning)-CSA
- 4. Computer Science and Engineering (IoT and Cyber Security including Block Chain Technology) (CSB)
- 5. Computer Science and Engineering(Data Science)-CSD
- 6. Computer Science and Engineering(CSE)
- 7. Computer Science and Technology(CST)
- 8. Electronics and Communication Engineering(ECE)
- 9. Electronics and Communication Technology(ECT)
- 10. Electrical and Electronics Engineering(EEE)
- 11. Information Technology(IT)
- 12. Mechanical Engineering(ME)
- Curriculum framework is important in setting the right direction for a Degree program as it takes into account the type and quantum of knowledge necessary to be acquired by

a student to qualify for a award in his/her chosen branch or specialization.

- Besides, this also helps in assigning the credits for each course, sequencing the courses semester-wise and finally arriving at the total number of courses to be studied and the total number of credits to be earned by a student to fulfill the requirements for conferment of degree.
- Each theory course shall consist of five units.

1.3.2. Curriculum Structure

The curriculum structure is designed in such a way that it facilitates the courses required to attain the expected knowledge, skills and attitude by the time of their graduation as per the needs of the stakeholders. The curriculum structure consists of various course categories (as described in 1.6.3 to 1.6.9) to cover the depth and breadth required for the program and for the attainment of program outcomes of the corresponding program. Each Programme of study will be designed to have 40-45 theory courses and 16-18 laboratory courses. The distribution and types of courses offered from the above is indicated in the following table 3.

1.3.3. Induction Program

The Induction Program for two weeks is designed to make the newly joined students feel comfortable, sensitize them towards exploring their academic interests and activities, reducing competition and making them work for excellence, promote bonding within them, build relations between teachers and students and building of character. Induction program covers

Physical activity Creative arts Universal human values Literary and Proficiency modules Lectures by Eminent peoples

1.4Admission Criteria

The eligibility criteria for admission into UG engineering programs are as per the norms approved by government of Andhra Pradesh from time to time. The sanctioned seats in each program in the college are classified into CATEGORY-A and CATEGORY-B at first year level and Lateral Entry at second year level.

- **CATEGORY A Seats:** These seats will be filled as per the norms approved by the Government of Andhra Pradesh.
- **CATEGORY B Seats:** These seats will be filled by the College as per the norms approved by the Government of Andhra Pradesh.
- **CATEGORY Lateral Entry Seats** : Lateralentry candidates shall be admitted into the Third semester directly as per the norms approved by government of Andhra Pradesh. The percentages of Category-A, Category-B and Lateral Entry Seats are decided time to time by the Government of Andhra Pradesh.

2. Award of B. Tech. Degree

- a) A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:
 - i. A student shall be declared eligible for the award of B. Tech Degree, if he pursues a course of study in not less than four and not more than eight academic years. After eight academic years from the year of their admission, he/she shall forfeit their seat in B.Tech course and their admission stands cancelled.
 - ii. The candidate shall register for 160 credits and secure all the 160 credits.
- b) The medium of instruction for the entire under graduate programmer in Engineering &Technology will be in **English** only.

3. Programme Pattern:

- a) Total duration of the of B. Tech (Regular) Programme is four academic years
- b) Each Academic year of study is divided into Two Semesters.
- c) Minimum number of instruction days in each semester is 90.
- d) Grade points, based on percentage of marks awarded for each course will form the basis for calculation of SGPA (Semester Grade Point Average) and CGPA (Cumulative Grade Point Average).
- e) The total credits for the Programme is 160.
- f) Three week induction program is mandatory for all first year UG students and shall be conducted as per AICTE/UGC/APSCHE guidelines.
- g) Student is introduced to "Choice Based Credit System (CBCS)".
- h) A pool of interdisciplinary and job-oriented mandatory skill courses which are relevant to the industry are integrated into the curriculum of concerned branch of engineering (total five skill courses: two basic level skill courses, one on soft skills and other two on advanced level skill courses)
- i) A student has to register for all courses in a semester.
- j) All the registered credits will be considered for the calculation of final CGPA.
- k) Each semester has 'Continuous Internal Evaluation (CIE)' and 'Semester End Examination (SEE)'.Choice Based Credit System (CBCS) and Credit Based Semester System (CBSS) as indicated by UGC and course structure as suggested by AICTE are followed.
- A 10 months industry/field mandatory internship, both industry and social, during the summer vacation and also in the final semester to acquire the skills required for job and make engineering graduates to connect with the needs of the industry and society at large.
- m) All the students shall be mandatorily registered for NCC, NSS activities and Community Service Project as per the Government and University norms.
- n) Each college shall assign a faculty advisor/mentor after admission to each student or group of students from same department to provide guidance in courses registration / career growth/placements/opportunities for higher studies/GATE / other competitive exams etc.

4. Registration for Courses:

a) In each semester a student shall mandatorily register courses which he/she wishes to pursue within a week from the starting of the class work with the advice of Head of the Department and mentor of the student of the concerned department of the college.

b) If any student wishes to withdraw the registration of the course, he/she shall submit a letter to the Principal of the college through the Head of the Department and mentor within fifteen days.

c) The concerned college shall thoroughly verify and upload the data/courses registered by each student in the university examination center within 20 days. The Principal of the concerned college shall ensure that there no wrong registration courses by the student. The university registration portal will be closed after 20 days.

- **5.** (a) Award of B. Tech. Degree: A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:
- i. A student shall be declared eligible for award of the B. Tech Degree, if he pursues a course of study in not less than four and not more than eight academic years. After eight academic years from the year of their admission, he/she shall **forfeit** their seat in B. Tech course and their admission stands cancelled.
- ii. The student shall register for 160 credits and must secure all the 160 credits.

- iii. All students shall mandatorily register for the courses like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc., shall be included in the curriculum as non-credit mandatory courses. Environmental Sciences is to be offered compulsorily as mandatory course for all branches. A student has to secure at least 40% of the marks allotted in the internal evaluation for passing the course and shall maintain 75% of attendance in the subject.
- iv. All students shall mandatorily register for NCC/NSS activities and will be required to participate in an activity specified by NSS officer during second and third semesters. Grade shall be awarded as Satisfactory or Unsatisfactory in the mark sheet on the basis of participation, attendance, performance and behavior. If a student gets an unsatisfactory Grade, he/she shall repeat the above activity in the subsequent years, in order to complete the degree requirements.
- v. Credits are defined as per AICTE norms.

(b) Award of B. Tech. (Honor):

- Students of a Department/Discipline are eligible to opt for Honors Programme offered by the same Department/Discipline
- A student shall be permitted to register for Honors program at the beginning of 4 th semester provided that the student must have acquired a minimum of 8.0 SGPA upto the end of 2 nd semester without any backlogs. In case of the declaration of the 3rd semester results after the commencement of the 4th semester and if a student fails to score the required minimum of 8 SGPA, his/her registration for Honors Programme stands cancelled and he/she shall continue with the regular Programme.
- Students can select the additional and advanced courses from their respective branch in which they are pursuing the degree and get an honors degree in the same. e.g. If a Mechanical Engineering student completes the selected advanced courses from same branch under this scheme, he/she will be awarded B. Tech. (Honors) in Mechanical Engineering.
- In addition to fulfilling all the requisites of a Regular B. Tech Programme, a student shall earn 20 additional credits to be eligible for the award of B. Tech (Honors) degree. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e. 160 credits).
- Of the 20 additional Credits to be acquired, 16 credits shall be earned by undergoing specified courses listed as pools, with four courses, each carrying 4 credits. The remaining 4 credits must be acquired through two MOOCs, which shall be domain specific, each with 2 credits and with a minimum duration of 8/12weeks as recommended by the Board of studies.
- It is the responsibility of the student to acquire/complete prerequisite before taking the respective course. The courses offered in each pool shall be domain specific courses and advanced courses
- The concerned BoS shall decide on the minimum enrolments for offering Honors program by the department. If minimum enrolments criteria are not met then the students shall be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BoS.
- Each pool can have theory as well as laboratory courses. If a course comes with a lab component, that component has to be cleared separately. The concerned BoS shall 16 explore the possibility of introducing virtual labs for such courses with lab component.
- MOOC courses must be of minimum 8 weeks in duration. Attendance will not be monitored for MOOC courses. Students have to acquire a certificate from the agencies approved by the BOS with grading or marks or pass/fail in order to earn 4 credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned will be

as decided by the university/academic council.

- The concerned BoS shall also consider courses listed under professional electives of the respective B. Tech programs for the requirements of B. Tech (Honors). However, a student shall be permitted to choose only those courses that he/she has not studied in any form during the Programme.
- If a student drops or is terminated from the Honors program, the additional credits so far earned cannot be converted into free or core electives; they will remain extra. These additional courses will find mention in the transcript (but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass (P)" grade and also choose to omit the mention of the course as for the following: All the courses done under the dropped Minors will be shown in the transcript. None of the courses done under the dropped Minor will be shown in the transcript.
- In case a student fails to meet the CGPA requirement for Degree with Honors at any point after registration, he/she will be dropped from the list of students eligible for Degree with Honors and they will receive regular B.Tech degree only. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- Honors must be completed simultaneously with a major degree program. A student cannot earn Honors after he/she has already earned bachelor's degree.

(c) Award of B. Tech. (Minors):

- a)Students who are desirous of pursuing their special interest areas other than the chosen discipline of Engineering may opt for additional courses in minor specialization groups offered by a department other than their parent department. For example, If Mechanical Engineering student selects subjects from Civil Engineering under this scheme, he/she will get Major degree of Mechanical Engineering with minor degree of Civil Engineering b) Student can also opt for Industry relevant tracks of any branch to obtain the Minor Degree, for example, a B.Tech Mechanical student can opt for the industry relevant tracks like Data Mining track, IOT track, Machine learning track etc.
- The BOS concerned shall identify as many tracks as possible in the areas of emerging technologies and industrial relevance / demand. For example, the minor tracks can be the fundamental courses in CSE, ECE, EEE,CE,ME etc or industry tracks such as Artificial Intelligence (AI), Machine Learning (ML), Data Science (DS), Robotics, Electric vehicles, Robotics, VLSI etc.
- The list of disciplines/branches eligible to opt for a particular industry relevant minor specialization shall be clearly mentioned by the respective BoS.
- There shall be no limit on the number of programs offered under Minor. The University/Institution can offer minor programs in emerging technologies based on expertise in the respective departments or can explore the possibility of collaborating with the relevant industries/agencies in offering the program.
- The concerned BoS shall decide on the minimum enrolments for offering Minor program by the department. If a minimum enrolments criterion is not met, then the students may be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BoS.
- A student shall be permitted to register for Minors program at the beginning of 4th semester subject to a maximum of two additional courses per semester, provided that the student must have acquired 8 SGPA (Semester Grade point average) upto the end of 2nd semester without any history of backlogs. It is expected that the 3rd semester results may be announced after the commencement of the 4th semester. If a student fails to acquire 8 SGPA upto 3rd semester or failed in any of the courses, his registration for Minors program shall stand cancelled. An SGPA of 8 has to be

maintained in the subsequent semesters without any backlog in order to keep the Minors registration active.

- A student shall earn additional 20 credits in the specified area to be eligible for the award of B. Tech degree with Minor. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e. 160 credits).
- Out of the 20 Credits, 16 credits shall be earned by undergoing specified courses listed by the concerned BoS along with prerequisites. It is the responsibility of the student to acquire/complete prerequisite before taking the respective course. If a course comes with a lab component, that component has to be cleared separately. A student shall be permitted to choose only those courses that he/she has not studied in any form during the Programme.
- In addition to the 16 credits, students must pursue at least 2 courses through MOOCs. The courses must be of minimum 8 weeks in duration. Attendance will not be monitored for MOOC courses. Student has to acquire a certificate from the agencies approved by the BOS with grading or marks or pass/fail in order to earn 4 credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned as decided by the university/academic council.
- Student can opt for the Industry relevant minor specialization as approved by the concerned departmental BoS. Student can opt the courses from Skill Development Corporation (APSSDC) or can opt the courses from an external agency recommended and approved by concerned BOS and should produce course completion certificate. The Board of studies of the concerned discipline of Engineering shall review such courses being offered by eligible external agencies and prepare a fresh list every year incorporating latest skills based on industrial demand.
- A committee should be formed at the level of College/Universities/department to evaluate the grades/marks given by external agencies to a student which are approved by concerned BoS. Upon completion of courses the departmental committee should convert the obtained grades/marks to the maximum marks assigned to that course. The controller of examinations can take a decision on such conversions and may give appropriate grades.
- If a student drops (or terminated) from the Minor program, they cannot convert the earned credits into free or core electives; they will remain extra. These additional courses will find mention in the transcript (but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass (P)" grade and also choose to omit the mention of the course as for the following: All the courses done under the dropped Minors will be shown in the transcript. None of the courses done under the dropped Minor will be shown in the transcript.
- In case a student fails to meet the CGPA requirement for B.Tech degree with Minor at any point after registration, he/she will be dropped from the list of students eligible for degree with Minors and they will receive B. Tech degree only. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- Minor must be completed simultaneously with a major degree program. A student cannot earn the Minor after he/she has already earned bachelor's degree.

6. Attendance Requirements

- a) A student is eligible to write the University examinations if he acquires a minimum of 40% in each subject and 75% of attendance in aggregate of all the subjects.
- b) Condonation of shortage of attendance in aggregate up to 10% (65% and above, and below 75%) may be granted by the College Academic Committee. However, this condonation concession is applicable only to any two semesters during the entire

programme.

c) Shortage of Attendance below 65% in aggregate shall not be condoned.

- d) A student who is short of attendance in a semester may seek re-admission into that semester when offered within 4 weeks from the date of commencement of class work.
- e) Students whose shortage of attendance is not condoned in any semester are not eligible to write their end semester examination of that class.
- f) A stipulated fee of Rs. 1000/- in the concerned semester shall be payable towards condonation of shortage of attendance. Students availing condonation on medical ground shall produce a medical certificate issued by the competitive authority.
- g) A student will be promoted to the next semester if he satisfies the (i) attendance requirement of the present semester and (ii) minimum required credits.
- h) If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.
- i) For induction programme attendance shall be maintained as per AICTE norms.
- j) For non-credit mandatory courses the students shall maintain the attendance similar to credit courses

7. Evaluation-Distribution and Weightage of marks

- i. Paper setting and evaluation of the answer scripts shall be done as per the procedures laid down by the University Examination section from time to time.
- ii. To maintain the quality, external examiners and question paper setters shall be selected from reputed institutes like IISc, IITs, IIITs, IISERs, NITs and Universities.
- iii. For non-credit mandatory courses, like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge, the student has to secure 40% of the marks allotted in the internal evaluation for passing the course. No marks or letter grade shall be allotted for all mandatory non-credit courses.
- iv. A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted to each theory/practical design/drawing subject/ project etc by securing not less than 35% of marks in the end semester exam and minimum 40% of marks in the sum total of the internal marks and end semester examination marks together.

v	•	Distribution and Weightage of marks: The asse	essment of the	student's per	formance
		in each course will be as per the details given:			
	C NL	Components	Internal	External	Total

S.No	Components	Internal	External	Total
1	Theory	30	70	100
2	Engineering Graphics/Design/Drawing	30	70	100
3	Practical	15	35	50
4	Mini Project/Internship/Industrial Training/ Skill Development programs/Research Project	-	50	50
5	Project Work	60	140	200

vi. Continuous Internal Theory Evaluation:

- a) For theory subjects, during a semester, there shall be two mid-term examinations. Each mid-term examination consists of (i) one online objective examination (20 multiple choice questions) for 10 marks for a duration of 20 minutes (ii) one descriptive examination (3 full questions for 5 marks each) for 15 marks for a duration of 90 minutes and (iii) one assignment for 05 marks. All the internal exams shall be conducted as per university norms from first 50% of the syllabi.
- b) In the similar lines, the second online, descriptive examinations assignment shall be conducted on the rest of the 50% syllabus.

- c) The total marks secured by the student in each mid-term examination are evaluated for 30 marks. The first mid marks (Mid-1) consisting of marks of online objective examination, descriptive examination and assignment shall be submitted to the University examination section within one week after completion of first mid examination.
- d) The mid marks submitted to the University examination section shall be displayed in the concerned college notice boards for the benefit of the students.
- e) If any discrepancy found in the submitted Mid-1 marks, it shall be brought to the notice of university examination section within one week from the submission.
- f) Second mid marks (Mid-2) consisting of marks of online objective examination, descriptive examination and assignment shall also be submitted to University examination section within one week after completion of second mid examination and it shall be displayed in the notice boards. If any discrepancy found in the submitted mid-2 marks, it shall be brought to the notice of university examination section within one week from the submission.
- g) Internal marks can be calculated with 80% weightage for better of the two mids and 20% Weightage for other mid exam.
 - a. Example: **Mid-1 marks** = Marks secured in
 - b. (Online examination-1 + descriptive examination-1 +one assignment-1)
 - c. **Mid-2 marks** = Marks secured in
 - d. (Online examination-2+descriptive examination-2+one assignment-2)
 - e. **Final internal Marks** = (Best of (Mid-1/Mid-2) marks x 0.8 + Least of (Mid-1/Mid-2) marks x 0.2)
- h) With the above criteria, university examination section will send mid marks of all subjects in consolidated form to all the concerned colleges and same shall be displayed in the concerned college notice boards. If any discrepancy found, it shall be brought to the notice of university examination section through proper channel within one week with all proofs. Discrepancies brought after the given deadline will not be entertained under any circumstances.

vii. Semester End Theory Examinations Evaluation:

- a) The semester end examinations will be conducted university examination section for 70 marks consists of five questions carrying 14 marks each. Each of these questions is from one unit and may contain sub-questions. For each question there will be an "either" "or" choice, which means that there will be two questions from each unit and the student should answer either of the two questions.
- b) For practical subjects there shall be continuous evaluation during the semester for 15 internal marks and 35 end examination marks. The internal 15 marks shall be awarded as follows: day to day work 5 marks, Record-5 marks and the remaining 5 marks to be awarded by conducting an internal laboratory test. The end examination shall be conducted by the teacher concerned and external examiner appointed.
- c) For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 30 marks for internal evaluation (15 marks for continuous Assessment (day-to-day work) and 15 marks for internal tests) and 70 marks for end examination. There shall be two internal tests in a Semester for 15 marks each and final marks can be calculated with 80% weightage for better of the two tests and 20% weightage for other test and these are to be added to the marks obtained in day to day work.

Evaluation of the summer internships:

• Two summer internships each with a minimum of six weeks duration, done at the end of second and third years, respectively are mandatory. The internship can be

done by the students at local industries, Govt. Organizations, construction agencies, Industries, Hydel and thermal power projects and also in software MNCs.

- Evaluation of the summer internships shall be through the departmental committee. A student will be required to submit a summer internship report to the concerned department and appear for an oral presentation before the departmental committee. The report and the oral presentation shall carry 40% and 60% weightages respectively.
- In the final semester, the student should mandatorily undergo internship and parallelly he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner
- The College shall facilitate and monitor the student internship programs. Completion of internships is mandatory, if any student fails to complete internship, he/she will not be eligible for the award of degree. In such cases, the student shall repeat and complete the internship.
- It shall be evaluated for 50 external marks at the end of the semester. There shall be no internal marks for Summer Internship. A student shall secure minimum 40% of marks for successful completion.
- d) Curricular Framework for Skill oriented :
 - The job oriented skill courses may be registered at the college or at any accredited external agency. A student shall submit a record/report on the on the list skills learned. If the student completes job oriented skill course at external agency, a certificate from the agency shall be included in the report. The course will be evaluated at the end of the semester for 50 marks (record: 15 marks and viva-voce: 35 marks) along with laboratory end examinations in the presence of external and internal examiner (course instructor or mentor). There are no internal marks for the job oriented skill courses.
 - For skill oriented/skill advanced course, one theory and 2 practical hours or two theory hours may be allotted as per the decision of concerned BOS.
 - Out of the five skill courses two shall be skill-oriented courses from the same domain and shall be completed in second year. Of the remaining 3 skill courses, one shall be necessarily be a soft skill course and the remaining 2 shall be skill-advanced courses either from the same domain or Job oriented skill courses, which can be of inter disciplinary nature.
 - A pool of interdisciplinary job-oriented skill courses shall be designed by a common Board of studies by the participating departments/disciplines and the syllabus along with the pre requisites shall be prepared for each of the laboratory infrastructure requirements. The list of such courses shall be included in the curriculum structure of each branch of Engineering, so as to enable the student to choose from the list
 - The student shall be given an option to choose either the skill courses being offered by the college or to choose a certificate course being offered by industries/Professional bodies/APSSDC or any other accredited bodies as approved by the concerned BoS
 - The Board of studies of the concerned discipline of Engineering shall review the skill advanced courses being offered by eligible external agencies and prepare a

fresh list every year incorporating latest courses based on industrial demand

- If a student chooses to take a Certificate Course offered by industries/Professional bodies/APSSDC or any other accredited bodies, in lieu of the skill advanced course offered by the Department, the credits shall be awarded to the student upon producing the Course Completion Certificate from the agency/professional bodies as approved by the Board of studies.
- If a student prefers to take a certificate course offered by external agency, the department shall mark attendance of the student for the remaining courses in that semester excluding the skill course in all the calculations of mandatory attendance requirements upon producing a valid certificate as approved by the concerned Board of Studies, the student is deemed to have fulfilled the attendance requirement of the course and acquire the credits assigned to the course.
- A committee shall be formed at the level of the college to evaluate the grades/marks given for a course by external agencies and convert to the equivalent marks/grades. The recommended conversions and appropriate grades/marks are to be approved by the University/Academic Council.
- e) **Mandatory Course (M.C):** Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc non-credit (zero credits) mandatory courses. Environmental Sciences shall be offered compulsorily as mandatory course for all branches. A minimum of 75% attendance is mandatory in these subjects. There shall be an external examination for 70 marks and it shall be conducted by the college internally. Two internal examinations shall be conducted for 30 marks and a student has to secure at least 40% of the marks for passing the course. There is no online internal exam for mandatory courses. No marks or letter grade shall be printed in the transcripts for all mandatory non-credit courses, but only Completed (Y)/Not-completed (N) will be specified.
- f) Procedure for Conduct and Evaluation of MOOC: There shall be a Discipline Centric Elective Course through Massive Open Online Course (MOOC) as Program Elective course. The student shall register for the course (Minimum of 12 weeks) offered by SWAYAM/NPTEL through online with the approval of Head of the Department. The Head of the Department shall appoint one mentor for each of the MOOC subjects offered. The student needs to register the course in the SWAYAM/NPTEL portal. During the course, the mentor monitors the student's assignment submissions given by SWAYAM/NPTEL. The student needs to submit all the assignments given and needs to take final exam at the proctor center. The student needs to earn a certificate by passing the exam. The student will be awarded the credits given in curriculum only by submission of the certificate. In case if student does not pass subjects registered through SWAYAM/NPTEL, the same or alternative equivalent subject may be registered again through SWAYAM/NPTEL in the next semester with the recommendation of HOD and shall be pass.

g) Major Project (Project - Project work, seminar and internship in industry):

In the final semester, the student should mandatorily register and undergo internship and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner.

Evaluation: The total marks for project work 200 marks and distribution shall be 60 marks for internal and 140 marks for external evaluation. The supervisor assesses the student for 30 marks (Report: 15 marks, Seminar: 15 marks). At the end of the

semester, all projects shall be showcased at the department for the benefit of all students and staff and the same is to be evaluated by the departmental Project Review Committee consisting of supervisor, a senior faculty and HOD for 30 marks. The external evaluation of Project Work is a Viva-Voce Examination conducted in the presence of internal examiner and external examiner and is evaluated for 140 marks.

8 **Results Declaration:**

- i. Before results declaration, an academic council meeting shall be conducted and results shall be placed before the academic council for approval.
- ii. With the approval of academic council, the results shall be submitted to the University to get the Approval from Honorable Vice-Chancellor.
- iii. The University may normalize the result, if required, before declaration of the result (Guidelines for normalization will be provided separately)
- iv. A copy of approved results in a CD shall be submitted to the University examination Center.
- 9. Academic Audit: Academic audit in each semester will be conducted as per norms.
- **10. Recounting or Re-evaluation of Marks in the End Semester Examination:** A student can request for recounting of revaluation of his/her answer book on payment of a prescribed fee as per norms.
- **11. Supplementary Examinations:** A student who has failed to secure the required credits can appear for a supplementary examination, as per the schedule announced by the University.
- **12. Malpractices in Examinations:** Disciplinary action shall be taken in case of malpractices during Mid/End examinations as per the rules framed by the University.
- **13. Promotion Rules:** The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in <u>item no.5 for</u> promotion to higher classes

a) A student shall be promoted from first year to second year if he fulfills the minimum attendance requirement as per University norm.

b) A student will be promoted from II year to III year if he fulfills the academic requirement of 40% of credits up to either II year I-Semester or II year II-Semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in II year II semester.

c) A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

14. Course Pattern

a) The entire course of study is for four academic years; all years are on semester pattern.

b) A student eligible to appear for the end semester examination in a subject, but absent from it or has failed in the end semester examination, may write the exam in that subject when conducted next.

c) When a student is detained for lack of credits / shortage of attendance, he may be readmitted into the same semester/year in which he has been detained. However, the academic regulations under which he was first admitted shall continue to be applicable to him.

15. Earning of Credit:

A student shall be considered to have completed a course successfully and earned the credits if he/she secures an acceptable letter grade in the range A+ to E as given below. Letter grade 'F' in any course implies failure of the student in that course and no credits earned. Absent is also treated as no credits earned. For project same % percentages will be followed for grading.

Marks Range Max:100	Marks range Max:50	Level	Letter Grade	Grade point
≥ 90	\geq 45	Outstanding	A+	10
\geq 80 to <89	\geq 40 to <44	Excellent	А	9
\geq 70 to <79	≥35 to <39	Very Good	В	8
≥60 to <69	\geq 30 to <34	Good	C	7
\geq 50 to <59	≥ 25 to ≤ 29	Fair	D	6
≥40 to <49	≥ 20 to < 24	Satisfactory	E	5
<40	<20	Fail	F	0
-		Absent	AB	0

16. Award of Class:

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	CGPA to be secured	Remarks
First Class with Distinction	≥7.75 (Without any supplementary appearance)	From the
First Class	\geq 6.75	secured
Second Class	\geq 5.75 to < 6.75	from
Pass Class	\geq 5.00 to < 5.75	160 Credits

17. Minimum Instruction Days:

The minimum instruction days for each semester shall be 90 working days. There shall be no branch transfers after the completion of the admission process. There shall be no transfer from one college/stream to another within the Constituent Colleges and Units of Jawaharlal Nehru Technological University Kakinada.

18. Withholding of Results:

If the student is involved in indiscipline/malpractices/court cases, the result of the student will be withheld.

19. Transitory Regulations

a) Discontinued or detained candidates are eligible for re-admission as and when next offered.

b) The re-admitted candidate will be governed by the rules & regulations under which the candidate has been admitted.

c) In case of transferred students from other Universities, credits shall be transferred to JNTUK as per the academic regulations and course structure of JNTUK.

d) The students seeking transfer to colleges affiliated to JNTUK from various other Universities / Institutions haveto obtain the credits of any equivalent subjects as prescribed by JNTUK. In addition, the transferred candidates have to pass the failed subjects at the earlier Institute with already obtained internal/sessional marks to be conducted by JNTUK.

20. Gap – Year:

Gap Year concept of Student Entrepreneur in Residence shall be introduced and outstanding students who wish to pursue entrepreneurship are allowed to take a break of one

year at any time after I/II/III year to pursue entrepreneurship full time. This period shall be counted for the maximum time for graduation. An evaluation committee at university level shall be constituted to evaluate the proposal submitted by the student and the committee shall decide on permitting the student for availing the Gap Year.

21. General:

a) Wherever the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".

b) The academic regulation should be read as a whole for the purpose of any interpretation.

c) In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.

d) The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.

ACADEMIC REGULATIONS (SITE21) FOR B.Tech (LATERAL ENTRY SCHEME)

Applicable for the students admitted into II year B. Tech. from the Academic Year 2022-23 onwards

1. Award of B. Tech. Degree

A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:

a) A student shall be declared eligible for the award of the B. Tech Degree, if he pursues a course of study in not less than three academic years and not more than six academic years. After six academic years from the year of their admission, he/she shall forfeit their seat in B. Tech course and their admission stands cancelled.

b) The candidate shall register for 121 credits and secure all the 122 credits.

- 2. The attendance regulations of B. Tech. (Regular) shall be applicable to B.Tech (lateral entry)
- 3. **Promotion Rules:** A student shall be promoted from second year to third year if he fulfills the minimum attendance requirement.

A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

4. Award of Class

After a student has satisfied the requirement prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	CGPA to be secured	Remarks
First Class with Distinction ≥ 7.75 (Without any supplementary appearance)		From the CGPA secured from
First Class	≥ 6.75	Year
Second Class	\geq 5.75 to < 6.75	
Pass Class	\geq 5.00 to < 5.75	

The Grades secured, Grade points and Credits obtained will be shown separately in the memorandum of marks.

 All the other regulations as applicable to B. Tech. 4-year degree course (Regular) will hold good for B. Tech. (Lateral Entry Scheme COMMUNITY SERVICE PROJECT

Introduction

- 1. Community Service Project is an experiential learning strategy that integrates meaningful community service with instruction, participation, learning and community development
- 2. Community Service Project involves students in community development and service activities and applies the experience to personal and academic development.
- 3. Community Service Project is meant to link the community with the college for mutual benefit. The community will be benefited with the focused contribution of the college students for the village/ local development. The college finds an opportunity to develop social sensibility and responsibility among students and also emerge as a socially responsible institution.

Objective

Community Service Project should be an integral part of the curriculum, as an alternative to the 2 months of Summer Internships / Apprenticeships / On the Job Training, whenever there is an exigency when students cannot pursue their summer internships. The specific objectives are;

1. To sensitize the students to the living conditions of the people who are around them,

2. To help students to realize the stark realities of the society.

3. To bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability

4. To make students aware of their inner strength and help them to find new /out of box solutions to the social problems.

5. To make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.

6. To help students to initiate developmental activities in the community in coordination with public and government authorities.

7. To develop a holistic life perspective among the students by making them study culture, traditions, habits, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Implementation of Community Service Project

1. Every student should put in a minimum of **180 hours** for the Community Service Project during the summer vacation

2. Each class/section should be assigned with a mentor.

3. Specific Departments could concentrate on their major areas of concern. For example, Dept. of Computer Science can take up activities related to Computer Literacy to different sections of people like - youth, women, house-wives, etc.

4. A log book has to be maintained by each of the student, where the activities undertaken/involved to be recorded. The log book has to be countersigned by the concerned mentor/faculty in charge.

5. Evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member.

6. The final evaluation to be reflected in the grade memo of the student.

7. The Community Service Project should be different from the regular programs of NSS/NCC/Green Corps/Red Ribbon Club, etc.

8. Minor project report should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college.

9. Award of marks shall be made as per the guidelines of Internship/apprentice/ on the job training

Procedure

1. A group of students or even a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to commute from their residence and return back by evening or so.

2. The Community Service Project is a twofold one –

a) First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas. A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers, rather, it could be another primary source of data.

b) Secondly, the student/s could take up a social activity, concerning their domain or subject area. The different areas, could be like –

- Agriculture
- Health

- Marketing and Cooperation
- Animal Husbandry
- Horticulture
- Fisheries
- Sericulture
- Revenue and Survey
- Natural Disaster Management
- Irrigation
- Law & Order
- Excise and Prohibition
- Mines and Geology
- Energy
- Internet
- Free Electricity
- Drinking Water

EXPECTED OUTCOMES BENEFITS OF COMMUNITY SERVICE PROJECT TO STUDENTS

Learning Outcomes

1. Positive impact on students' academic learning.

2. Improves students' ability to apply what they have learned in "the real world".

3. Positive impact on academic outcomes such as demonstrated complexity of understanding, problem analysis, problem-solving, critical thinking, and cognitive development.

4. Improved ability to understand complexity and ambiguity.

Personal Outcomes

1. Greater sense of personal efficacy, personal identity, spiritual growth, and moral development.

2. Greater interpersonal development, particularly the ability to work well with others, and build leadership and communication skills

Social Outcomes

- 1. Reduced stereotypes and greater inter-cultural understanding
- 2. Improved social responsibility and citizenship skills
- 3. Greater involvement in community service after graduation

Career Development

1. Connections with professionals and community members for learning and career opportunities

2. Greater academic learning, leadership skills, and personal efficacy can lead to greater opportunity

Relationship with the Institution

- 1. Stronger relationships with faculty
- 2. Greater satisfaction with college

3. Improved graduation rates

BENEFITS OF COMMUNITY SERVICE PROJECT TO FACULTY MEMBERS

1. Satisfaction with the quality of student learning

2. New avenues for research and publication via new relationships between faculty and community

3. Providing networking opportunities with engaged faculty in other disciplines or institutions

4. A stronger commitment to one's research

BENEFITS OF COMMUNITY SERVICE PROJECT TO COLLEGES AND UNIVERSITIES

- 1. Improved institutional commitment
- 2. Improved student retention

3. Enhanced community relations

BENEFITS OF COMMUNITY SERVICE PROJECT TO COMMUNITY

- 1. Satisfaction with student participation
- 2. Valuable human resources needed to achieve community goals
- 3. New energy, enthusiasm and perspectives applied to community work
- 4. Enhanced community-university relations.

SUGGESTIVE LIST OF PROGRAMMES UNDER COMMUNITY SERVICE PROJECT

The following the recommended list of projects for engineering students. The lists are not exhaustive and open for additions, deletions and modifications. Colleges are expected to focus on specific local issues for this kind of projects. The students are expected to carry out these projects with involvement, commitment, responsibility and accountability. The mentors of a group of students should take the responsibility of motivating, facilitating, and guiding the students. They have to interact with local leadership and people and appraise the objectives and benefits of this kind of projects. The project reports shall be placed in the college website for reference. Systematic, Factual, methodical and honest reporting shall be ensured.

For Engineering Students

- 1. Water facilities and drinking water availability
- 2. Health and hygiene
- 3. Stress levels and coping mechanisms
- 4. Health intervention programs
- 5. Horticulture
- 6. Herbal plants
- 7. Botanical survey
- 8. Zoological survey
- 9. Marine products
- 10. Aqua culture
- 11. Inland fisheries
- 12. Animals and species
- 13. Nutrition
- 14. Traditional health care methods
- 15. Food habits
- 16. Air pollution
- 17. Water pollution
- 18. Plantation
- 19. Soil protection
- 20. Renewable energy
- 21. Plant diseases
- 22. Yoga awareness and practice
- 23. Health care awareness programs and their impact
- 24. Use of chemicals on fruits and vegetables
- 25. Organic farming
- 26. Crop rotation
- 27. Floury culture
- 28. Access to safe drinking water
- 29. Geographical survey
- 30. Geological survey
- 31. Sericulture
- 32. Study of species
- 33. Food adulteration
- 34. Incidence of Diabetes and other chronic diseases
- 35. Human genetics

- 36. Blood groups and blood levels
- 37. Internet Usage in Villages
- 38. Android Phone usage by different people
- 39. Utilization of free electricity to farmers and related issues

40. Gender ration in schooling level- observation.

Complementing the community service project, the students may be involved to take up some awareness campaigns on social issues/special groups. The suggested list of programs are;

Programs for School Children:

- 1. Reading Skill Programme (Reading Competition)
- 2. Preparation of Study Materials for the next class.
- 3. Personality / Leadership Development
- 4. Career Guidance for X class students
- 5. Screening Documentary and other educational films
- 6. Awareness Programme on Good Touch and Bad Touch (Sexual abuse)
- 7. Awareness Programme on Socially relevant themes.

Programs for Women Empowerment

- 1. Government Guidelines and Policy Guidelines
- 2. Women's' Rights
- 3. Domestic Violence
- 4. Prevention and Control of Cancer
- 5. Promotion of Social Entrepreneurship

General Camps

- 1. General Medical camps
- 2. Eye Camps
- 3. Dental Camps
- 4. Importance of protected drinking water
- 5. ODF awareness camp
- 6. Swatch Bharat
- 7. AIDS awareness camp
- 8. Anti-Plastic Awareness
- 9. Programs on Environment
- 10. Health and Hygiene
- 11. Hand wash programs
- 12. Coemoration and Celebration of important Programs for Youth Empowerment
- 1. Leadership
- 2. Anti-alcoholism and Drug addiction
- 3. Anti-tobacco
- 4. Awareness on Competitive Examinations
- 5. Personality Development

Common Programs

- 1. Awareness on RTI
- 2. Health intervention programs
- 3. Yoga
- 4. Tree plantation
- 5. Programs in consonance with the Govt. Departments like
 - i. Agriculture
 - ii. Health
 - iii. Marketing and Cooperation
 - iv. Animal Husbandry
 - v. Horticulture

- vi. Fisheries
- vii. Sericulture
- viii. Revenue and Survey
- ix. Natural Disaster Management
- x. Irrigation
- xi. Law & Order
- xii. Excise and Prohibition
- xiii. Mines and Geology
- xiv. Energy

Role of Students:

- 1. Students may not have the expertise to conduct all the programmes on their own. The students thencan play a facilitator role.
- 2. For conducting special camps like Health related, they will be coordinating with the Governmental agencies.
- 3. As and when required the College faculty themselves act as Resource Persons.

4. Students can work in close association with Non-Governmental Organizations like Lions Club, Rotary Club, etc or with any NGO actively working in that habitation.

- 5. And also, with the Governmental Departments. If the programme is rolled out, the District Administration could be roped in for the successful deployment of the programme.
- 6. An in-house training and induction programme could be arranged for the faculty and participating students, to expose them to the methodology of Service Learning.

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

a) A preliminary survey including the socio-economic conditions of the allotted habitation to be conducted.

b) A survey form based on the type of habitation to be prepared before visiting the habitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.

c) The Governmental agencies, like revenue administration, corporation and municipal authorities and village secretariats could be aligned for the survey.

2. Community Awareness Campaigns (Two Weeks)

Based on the survey and the specific requirements of the habitation, different awareness campaigns and programmes to be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.

3. Community Immersion Programme (Four Weeks)

Along with the Community Awareness Programmes, the student batch can also work with any one of the below listed governmental agencies and work in tandem with them. This community involvement programme will involve the students in exposing themselves to the experiential learning about the community and its dynamics. Programmes could be in consonance with the Govt. Departments.

4. Community Exit Report (One Week)

During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks works to be drafted and a copy shall be submitted to the local administration. This report will be a basis for the next batch of students visiting that particular habitation. The same report submitted to the teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission to the University.

Throughout the Community Service Project, a daily log-book need to be maintained by the students batch, which should be countersigned by the governmental agency representative and the teacher-mentor, who is required to periodically visit the students and guide them.

Course Numbering Scheme

The Course number code consists of 11alphabets. A typical course number code is illustrated in the followingFigure-1.

Mechanical Engineering (ME)

Figure 1: Course Numbering Scheme

The department codes are in given in following table 1.

Department	Two- character _code
Artificial Intelligence and Machine Learning	AM
Civil Engineering	CE
Electrical & Electronics Engineering	EE
Mechanical Engineering	ME
Electronics & Communications Engineering	EC
Electronics & Communications Technology	ET
Computer Science and Engineering(Artificial Intelligence and Machine Learning)	CA
Computer Science and Engineering(IoT and Cyber Security including Block Chain Technology)	СВ
Computer Science and Engineering (Data Science)	CD
Computer Science and Engineering	CS
Computer Science and Technology	СТ
Information Technology	IT
Management Science	MS

Table 1: Department Codes

Mathematics	MA
Physics	PH
Chemistry	СН
English	EG
Biology	BI
Common to All Branches	СМ

Example: ED in 3rd semester for ECT with S.No. 3

Course Code: 21ETETT3030

S. No.	Category	AIC TE	APS CHE	Approved
1	Humanities and Social Sciences	12	10.5	10.5
2	Basic Science courses	25	21	21
3	Engineering Science courses	24	24	22.5
4	Professional Core courses	48	51	52.5
5	Professional Elective Courses	18	15	15
6	Open elective courses	18	12	12
7	Project work , Seminar and Internship	15	16.5	16.5
8	Mandatory Courses	-	-	-
9	Skill courses	0	10	10
Total Credits		160	160	160

 Table 2: Comparison of Number of credits given by AICTE and Approved credits

Malpractice DISCIPLINARY ACTION FOR MALPRACTICES/IMPROPER CONDUCT IN EXAMS

S.	Nature of Malpractices/Improper	Punishment
No.	conduct	
	If the candidate:	
1. (a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
1. (b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.
3.	Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that

		semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.
	Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the avamination or answer book or additional	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the condidate
4.	sheet, during or after the examination.	has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
5.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject.
6.	Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in- charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.

	damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination	
7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.

	Comes in a drunken condition to the	Expulsion from the examination
	examination hall.	hall and cancellation of the
		performance in that subject and
		all other subjects the candidate
10.		has already appeared including
		practical examinations and project
		work and shall not be permitted
		for the remaining examinations of
		the subjects of that semester/year.
	Copying detected on the basis of internal	Cancellation of the performance
	evidence, such as, during valuation or	in that subject and all other
11	during special scrutiny.	subjects the candidate has
11.		appeared including practical
		examinations and project work of
		that semester/year examinations.
	If any malpractice is detected which is	
	not covered in the above clauses 1 to 11	
12.	shall be reported to the University for	
	further action to award suitable	
	punishment.	

MALPRACTICES

- The Principal shall refer the cases of malpractices in Continuous Evaluation and Semester-End Examinations, to Malpractice Enquiry Committee, constituted by him/her for the purpose. Such committee shall follow the approved scales of punishment. The Principal shall take necessary action, against the erring students based on the recommendations of the committee.
- Any action on the part of student at an examination trying to get undue advantage in the performance or trying to help another, or derive the same through unfair means is punishable according to the provisions contained hereunder. The involvement of the Staff, who are in charge of conducting examinations, valuing examination papers and preparing/keeping records of documents relating to the examinations in such acts (inclusive of providing incorrect or misleading information) that infringe upon the course of natural justice to one and all concerned at the examination shall be viewed seriously and recommended for award of appropriate punishment after thorough enquiry.

Ragging

Prohibition of ragging in educational institutions Act 26 of 1997 Salient Features

- Ragging within or outside any educational institution is prohibited.
- Ragging means doing an act which causes or is likely to cause Insult or Annoyance of Fear or Apprehension or Threat or Intimidation or outrage of modesty or Injury to a student.

Causing death or abetting suicide

In Case of Emergency call Toll Free Number : 1800-425-1288

LET US MAKE SITE RAGGING FREE INSTITUTE

Program Outcomes for an Engineering Graduates:

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

COURSE STRUCTUREAND SYLLABUS SITE-21 REGULATIONS

For B. Tech. In Electrical & Electronics Engineering

Comparison of suggested breakup of AICTE, APSCHE and SITE Curriculum

Category Credits	BS	ES	HSS	PC	PE	OE	MC	SOC	I& Project	Total
SITE	21	22.5	10.5	52.5	15	12	0	10	16.5	160
APSCHE	21	24	10.5	51	15	12	0	10	16.5	160
Comparison	0	-1.5	0	1.5	0	0	0	0	0	0
AICTE	25	24	12	48	18	18	0	0	15	160
Comparison	-4	-1.5	-1.5	4.5	-3	-6	0	10	1.5	0

Credit Distribution for B. Tech. EEE Program

SITE - 21 Credit distribution										
Semester				Ca	tegory	,				Sem
(Year)	BS	ES	HSS	PC	PE	OE	MC	SOC	SI&P	Credits
I (1)	3+2	2+1	-	-	-	-	0	-	-	19.5
II (1)	1	3+2	1+1	-	-	-	0	-	-	19.5
III (2)	1	-	-	4+3	-	-	1	1	-	21.5
IV (2)	1	1	1	2+3	-	-	-	1	-	21.5
V (3)	-	-	-	3+2	1	1	1	1	1	21.5
VI (3)	-	-	-	3+3	1	1	1	1	-	21.5
VII (4)	-	-	1	-	3	2	-	1	1	23
VIII (4)		Major	· Projec	et (6 mo	onths In	nternsl	hip)		12	12
Category Credits	21	22.5	10.5	52.5	15	12	0	10	16.5	160
% Credit distribution	13.125	14.063	6.56	32.813	9.38	7.5	0	6.25	10.31	100

	Course Structure for I B. Tech I Semester Under the Regulations of SITE-21											
	Common for (CE, EEE, ME, ECT, CST, AI & ML)											
	I SEMESER											
S.	Course	Course code	Course Title	L	т	Р	С					
No	Category	Course coue	Course The	Ľ	*	-	v					
1	BS	21CMMAT1010	Engineering Mathematics – I(Calculus	3	0	0	3					
		21CMIMATIOIO	and Differential Equations)									
2	BS	21EEPHT1020	Engineering Physics	3	0	0	3					
3	BS	21CMCHT1030	Engineering Chemistry	3	0	0	3					
4	ES	21CMCST1040	Programming for Problem Solving	3	0	0	3					
5	ES	21CMMEL1050	Engineering Graphics	2	0	2	3					
6	BS LAB	21EEPHL1060	Engineering Physics Lab	0	0	3	1.5					
7	BS LAB	21CMCHL1070	Engineering Chemistry Lab	0	0	3	1.5					
8	ES LAB	21CMCSL1080	Programming for Problem Solving Lab	0	0	3	1.5					
9	МС	21CMMSN1090	Constitution of India, Professional Ethics & Human Rights	2	0	0	0					
тот	TAL	16	0	11	19.5							

General Course Structure Total credits (4 year course) - 160

	Course Structure for I B. Tech II Semester Under the Regulations of SITE-21											
	Common for (CE, EEE, ME, ECT, CST, AI & ML)											
I I SEMESER												
S. No	Course Category	Course code	Course Title	L	Т	Р	С					
1	HS	21CMEGT2010	Technical English	3	0	0	3					
2	BS	21CMMAT2020	Engineering Mathematics – II(Linear algebra, Laplace Transforms and Numerical Methods)	3	0	0	3					
3	ES	21CMEET2030	Basic Electrical Engineering	3	0	0	3					
4	ES	21CMCST2040	Python Programming	1	0	4	3					
5	ES	21EEMET2050	Engineering Mechanics	3	0	0	3					
6	HS LAB	21CMEGL2060	English Communication Skills Lab	0	0	3	1.5					
7	ES LAB	21CMEEL2070	Basic Electrical Engineering Lab	0	0	3	1.5					
8	ES LAB	21CMMEL2080	Engineering Workshop Lab	0	0	3	1.5					
9	MC	21CMCHN2090	Environmental Science	2	0	0	0					
	TOTAL 15 0 13 19.5											

(Course Structure for II B. Tech I Semester Under the Regulations of SITE-21											
	III SEMESTER											
S. No	Course	Course Code	Course Title									
	Category			L	Т	P	С					
1	BS	21EEMAT3010	Engineering Mathematics III (Vector Calculus and Complex	3	0	0	3					
			Analysis)									
2	PC	21EEEET3020	Electrical Circuits Analysis	3	0	0	3					
3	PC	21EEEET3030	Analog Electronics	3	0	0	3					
4	PC	21EEEET3040	Electrical Measurements & Instrumentation	3	0	0	3					
5	PC	21EEEET3050	DC Machines & Transformers	3	0	0	3					
6	PC LAB	21EEEEL3060	Analog Electronics Lab	0	0	3	1.5					
7	PC LAB	21EEEEL3070	Electrical Circuit Analysis Lab	0	0	3	1.5					
8	PC LAB	21EEEEL3080	DC Machines & Transformers Lab	0	0	3	1.5					
9	SOC	21EEEES3090	Electrical Wiring & Installation	1	0	2	2					
10	MC	21EEEEN3100	Electromagnetic Fields	2	0	0	0					
			TOTAL	18	0	11	21.5					

	Course Structure for II B. Tech II Semester Under the Regulations of SITE-21												
			IV SEMESTER										
S. No	Course Category	Course Code	Course Title	L	Т	Р	С						
1	ES	21EEEET4010	Signals & Systems	3	0	0	3						
2	PC	21EEEET4020	Digital Electronics	3	0	0	3						
3	BS	21CMMAT4030	Engineering Mathematics-IV (Probability & Statistics)	3	0	0	3						
4	PC	21EEEET4040	Induction & Synchronous Machines	3	0	0	3						
5	HSS	21CMMST4050	Engineering Economics And Financial Management	3	0	0	3						
6	PC LAB	21EEEEL4060	Digital Electronics Lab	0	0	3	1.5						
7	PC LAB	21EEEEL4070	Electrical Measurements & Instrumentation Lab	0	0	3	1.5						
8	PC LAB	21EEEEL4080	Induction & Synchronous Machines Lab	0	0	3	1.5						
9	SOC	21EEEES4090	Design of Electrical Circuits using Engineering software tools	1	0	2	2						
							21.5						
10	H/M		Honor/Minor courses(The hours distribution can be 3-0-2 or 3-1-0)	4	0	0	4						

	Course Structure for III B. Tech I Semester Under the Regulations of SITE-21											
			V SEMESTER									
S. No	Course Category	Course Code	Course Title	L	Т	Р	С					
1	PC	21EEEET5010	Power Generation, Transmission & Distribution	3	0	0	3					
2	PC	21EEEET5020	Power Electronics	3	0	0	3					
3	PC	21EEEET5030	Control Systems	3	0	0	3					
4	OE	21EEXXO504X	Open Elective-I	2	0	2	3					
5	PE	21EEEP505X	Professional Elective-I	3	0	0	3					
6	PC LAB	21EEEEL5060	Power Systems Lab	0	0	3	1.5					
7	PC LAB	21EEEEL5070	Power Electronics Lab	0	0	3	1.5					
8	SAC/SC	21CMAHSx0x	Soft Skills & Aptitude Builder - 1	1	0	2	2					
9	MC	21EEEEN5090	Energy studies	2	0	0	0					
10	SI	21EEEEI5010	Summer Internship (1-2 months) after second year to evaluate in V semester	0	0	0	1.5					
ТОТА						10	21.5					
11	H/M		Honor/Minor courses(The hours distribution can be 3-0-2 or 3-1-0)	4	0	0	4					

Professional Elective – I

S. No	Course Code	Course Title	L	Т	Р	С
1	21EEEP505A	Special Electrical Machines.	3	0	0	3
2	21EEEP505B	Electrical Energy conservation & Auditing.	3	0	0	3
3	21EEEP505C	Digital signal Processing	3	0	0	3

	Course	e Structure for III	B. Tech II Semester Under the Regulation	ions (of S	ITE-2	21			
			VI SEMESR							
S. No	Course Category	Course Code	Course Title	L	Т	Р	С			
1	PC	21EEEET6010	Power System Analysis, Operation & Control	3	0	0	3			
2	PC	21EEEET6020	Microprocessors & Microcontrollers	3	0	0	3			
3	PC	21EEEET6030	Power Semiconductor Drives	3	0	0	3			
4	PE	21EEEP604X	Professional Elective-II	3	0	0	3			
5	OE	21EEXXO605X	Open Elective -II	2	0	2	3			
6	PC	21EEEEL6040	Microprocessors & Microcontrollers Laboratory	0	0	3	1.5			
7	PC LAB	21EEEEL6050	Control Systems Lab	0	0	3	1.5			
8	PC LAB	21EEEEL6060	Power Systems Analysis Lab	0	0	3	1.5			
9	SAC/SC	21CMAHSx0x	Soft Skills & Aptitude Builder - 2	0	0	0	2			
10	I/RI	Industrial/	Industrial/Research Internship(Mandatory) 1-2 Months(No credits)							
			TOTAL	14	0	11	21.5			
11	H/M		Honor/Minor courses(The hours distribution can be 3-0-2 or 3-1-0)	4	0	0	4			

Professional Elective-II

S. No	Course Code	Course Title	L	Т	Р	С
1	21EEEP604A	Electrical Machine Modeling & Analysis	3	0	0	3
2	21EEEEP604B	Power system Protection.	3	0	0	3
3	21EEEP604C	Control system design.	3	0	0	3

	Course Stru	cture for IV B.	Fech I Semester Under the Regulation	ns of	SITI	E -21	
			VII SEMESTER				
S. No	Course Category	Course Code	Course Title	L	Т	Р	С
1	PE	21EEEP701X	Professional Elective-III	3	0	0	3
2	PE	21EEEP702X	Professional Elective -IV	3	0	0	3
3	PE	21EEEP703X	Professional Elective -V	3	0	0	3
4	OE	21EEXXO704X	Open Elective –III	2	0	2	3
5	OE	21EEXXO805X	Open Elective –IV	2	0	2	3
6	H&SS	21EEEEOX0XX	Elective	3	0	0	3
7	SAC/SC	21EEEES7010	Design of Photovoltaic Systems	1	0	2	2
8	SI	21EEEEI7020	Industrial/Research Internship (1-2 Months) after third year to be evaluated in VII semester	0	0	0	3
TOTA	L			17	0	6	23
9	H/M		Honor/Minor courses(The hours distribution can be 3-0-2 or 3-1-0)	4	0	0	4

Professional Elective-III

S.No.	Course Code	Course Title	L	Т	Р	С
1	21EEEP701A	Switched Mode Power Converters	3	0	0	3
2	21EEEEP701B	Electrical & Hybrid Vehicles	3	0	0	3
3	21EEEP701C	Artificial Intelligence Techniques	3	0	0	3

Professional Elective-IV

S.No.	Course Code	Course Title	L	Т	Р	С
1	21EEEP702A	Wind & Solar Energy Systems	3	0	0	3
2	21EEEEP702B	Power Quality	3	0	0	3
3	21EEEP702C	Digital Control Systems	3	0	0	3

Professional Elective-V

S	S.No.	Course Code	Course Title	L	Т	Р	С
	1	21EEEEP703A	FACTS & HVDC Transmission Systems	3	0	0	3
	2	21EEEP703B	Smart Grid	3	0	0	3
	3	21EEEP703C	Optimization Techniques	3	0	0	3

Cours	Course Structure for IV B. Tech II Semester Under the Regulations of SITE-21									
	VIII SEMESTER									
S.No.	Course Category	Course Code	Course Code Course Title							
1	Project	21EEER8010	Project, Seminar and Internship in Industry (6 months)	0	14	0	12			
			Total	0	14	0	12			

Open Electives offered by EEE department

S.No.	Course Code	Subject title	L	Т	Р	С
1	21XXEEOM0XA	Control system design	3	0	0	3
2	21XXEEOM0XB	Digital Control Systems	3	0	0	3
3	21XXEEOM0XC	Intelligent control & its applications	3	0	0	3
4	21XXEEOM0XD	Digital Signal Processing	3	0	0	3
5	21XXEEOM0XE	Electrical & Hybrid Vehicles	3	0	0	3
6	21XXEEOM0XF	Industrial Electrical Systems	3	0	0	3
7	21XXEEOM0XG	Electrical materials	3	0	0	3
8	21XXEEOM0XH	Optimization techniques	3	0	0	3
9	21XXEEOM0XI	Wind & Solar Energy Systems	3	0	0	3

Mandatory Courses

S.No.	Course Code	Subject title	L	Τ	P	С
1	21CMMSN1090	Constitution of India, ProfessionalEthics & Human Rights	2	0	0	0
2	21CMCHN2090	Environmental Science	2	0	0	0
3	21EEEEN3100	Electromagnetic Fields	2	0	0	0
4	21EEEEN5090	Energy studies	2	0	0	0

Skill oriented Courses

S.No.	Course Code	Subject title	L	Т	Р	С
1	21EEEES3090	Electrical Wiring & Installation	1	0	2	2
2	21EEEES4090	Design of Electrical Circuits using Engineering Software Tools	1	0	2	2
3	21CMAHSx0x	Soft Skills & Aptitude Builder - 1	1	0	2	2
4	21CMAHSx0x	Soft Skills & Aptitude Builder - 2	1	0	2	2
5	21EEEES7010	Design of Photovoltaic Systems	1	0	2	2
Course structure for Electrical & Electronics Engineering Honors (for EEE Students)

II B. Tech II Semester:

S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21EEEEH410A	Electrical Wiring, Estimation and	3	1	0	4
		Costing				
2	21EEEEH410B	SCADA Energy Management	3	1	0	4
		Systems				
3	21EEEEH410C	Linear IC Applications	3	1	0	4
4	21EEEEH410D	Renewable Energy Systems	3	1	0	4

III B. Tech I Semester:

S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21EEEEH511A	Electrical Machine Design	3	1	0	4
2	21EEEEH511B	Utilization of Electrical Energy & Traction	3	1	0	4
3	21EEEEH511C	Solar & Advanced Energy Storage System	3	1	0	4
4	21EEEH511D	Modern Control Systems	3	1	0	4

III B. Tech II Semester:

S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21EEEEH611A	Modern Power Electronics	3	1	0	4
2	21EEEEH611B	AC Drives	3	1	0	4
3	21EEEEH611C	Power Quality & Custom Power	3	1	0	4
		Devices				
4	21EEEEH611D	High Voltage Engineering	3	1	0	4

IV B. Tech I Semester:

S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21EEEH709A	EHV AC Transmission	3	1	0	4
2	21EEEEH709B	Line Commutated & Active	3	1	0	4
		Rectifiers				
3	21EEEH709C	Electrical Distribution Systems	3	1	0	4
4	21EEEH709D	Power Systems Dynamics & Stability	3	1	0	4

Course structure for Electrical & Electronics Engineering Minors to other Departments

II B. Tech II Semester:

S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21XXEEM410A	Fundamental of Electrical Circuit	3	1	0	4
		Theory				
2	21XXEEM410B	Fundamental of EMF Theory	3	1	0	4
3	21XXEEM410C	Fundamental of Control Systems	3	1	0	4

III B. Tech I Semester:

S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21XXEEM511A	Fundamentals of Electrical Machines	3	1	0	4
2	21XXEEM511B	Fundamentals of Power Electronics	3	1	0	4
3	21XXEEM511C	Fundamental of Electrical	3	1	0	4
		Measurements & Instrumentation				

III B. Tech II Semester:

S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21XXEEM611A	Fundamentals of Electrical Power	3	1	0	4
		Generation & Economic Concepts				
2	21XXEEM611B	Fundamentals of Renewable Energy	3	1	0	4
		Sources				
3	21XXEEM611C	Fundamentals of Energy Storage	3	1	0	4
		Systems				

IV B. Tech I Semester:

S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21XXEEM709A	Fundamentals of Electrical Power	3	1	0	4
		Transmission & Distribution				
2	21XXEEM709B	Fundamentals of Utilization of	3	1	0	4
		Electrical Energy				
3	21XXEEM709C	Fundamentals of Electrical Safety	3	1	0	4

	Course Structure for I B. Tech I Semester Under the Regulations of SITE-21					
		I Semester				
S.No	Subject Code	Course	Hours			Credits
			L	Т	Р	
1	21CMEGT1010	Engineering Mathematics - I	3	0	0	3
2	21CMMAT1020	Engineering Physics	3	0	0	3
3	21CMEET1030	Engineering Chemistry	3	0	0	3
4	21CMCST1040	Programming for Problem Solving	3	0	0	3
5	21EEMEL1050	Engineering Graphics	2	0	2	3
6	21EEPHL1060	Engineering Physics Lab	0	0	3	1.5
7	21CMCHL1070	Engineering Chemistry Lab	0	0	3	1.5
8	21CMCSL1080	Programming for Problem Solving Lab	0	0	3	1.5
9	21CMMSN1090	Constitution of India, Professional Ethics & Human Rights	2	0	0	0
		Total	16	0	11	19.5

	Course Structure for I B. Tech I Semester Under the Regulations of SITE-21					
		II Semester	-			
S.	Subject Code	Course	Hours			Credits
No	Subject Code		L	Т	Р	
1	21CMEGT2010	Technical English	3	0	0	3
2	21CMMAT2020	Engineering Mathematics – II	3	0	0	3
3	21CMEET2030	Basic Electrical Engineering	3	0	0	3
4	21CMCST2040	Python Programming	1	0	4	3
5	21EEMET2050	Engineering Mechanics	3	0	0	3
6	21CMEGL2060	English Communication Skills Lab	0	0	3	1.5
7	21CMEEL2070	Basic Electrical Engineering Lab	0	0	3	1.5
8	21EEMEL2080	Engineering Workshop Lab	0	0	3	1.5
9	21CMCHN2090	Environmental Science	2	0	0	0
		Total	16	0	11	19.5

	ENGINEERING (Calculus & Di Common to Se	G MATHEMATICS - fferential Equations) to all the branches mester I	I	
Subject Code		21CMMAT1010	IA Marks	30
Number of Lectur	e Hours/Week	3	Exam Marks	70
Total Number of	Lecture Hours	50	Exam Hours	03
	Cre	edits – 03	·	
Course Objective1. To solve t2. To enlight3. To familia4. To solve t5. To apply	es: ne differential equations relate en the learners in the concep rize with functions of severate ne partial partial differential double integration technique	ted to various engineer t of differential equation l variables which is us equations of first order s in evaluating areas b	ring fields ons. eful in optimizatio c ounded by region.	on Hours
		4 1		Hours
Linear differential Equ Linear differentia reducible to exact Applications: New Orthogonal trajec	equations of first order and first equations - Bernoulli's equations form. vton's law of cooling - Law contents.	st degree : ations – Exact equation of natural growth and c	ns and Equations lecay -	10
Unit -2				1
homogeneous diff non-homogeneou $x^n V(x)$ – Method Applications: LC	Ferential equations of higher of sterm of the type e ^{ax} , sin ax, of Variation of parameters. R circuit.	order with constant co cos ax, polynomials ir	efficients – with x^{n} , $e^{ax} V(x)$ and	10
Partial different Introduction – Ho rule– Jacobian – I of functions of tw Applications: Ma and Lagrange's m	ation: mogeneous function – Euler Functional dependence –Tayl o variables. kima and Minima of functior ethod.	's theorem– Total deri or's and MacLaurin's as of two variables with	vative– Chain series expansion hout constraints	10
PDE of first orde Formation of part arbitrary function (standard types) e	er: ial differential equations by e s – Solutions of first order lir quations.	elimination of arbitrary near (Lagrange) equation	constants and on and nonlinear	08
Unit – 5	*			
Multiple integra double integrals – Applications: Fin	s: Double and Triple integra Change of variables to polar ling Areas and Volumes.	ls – Change of order o r, cylindrical and spher	f integration in rical coordinates.	12
oks/ Reference Boo	ks:			
B. S. Grewal, B. V. Ramana Education.	Higher Engineering Mathem , Higher Engineering Mathem	natics, 44th Edition, Kl matics, 2007 Edition, 7	hanna Publishers. Γata Mc. Graw Hil	11
Erwin Kreysz	ig, Advanced Engineering M	athematics, 10th Editi	on, Wiley-India.	
Joel Hass, Ch Pearson.	ristopher Heil and Maurice D	D. Weir, Thomas calcu	lus, 14thEdition,	
Lawrence Tu	vn. Advanced Engineering N	Authematics, CRC Pres	ss. 2013.	

R3

R4	Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.				
Course outco	Course outcomes: On completion of this course, students are able to				
CO1	Solve the differential equations related to various engineering fields (L3)				
CO2	Solve the differential equations of higher order related to various engineering				
	fields (L3)				
CO3	familiarize with functions of several variables which is useful in optimization (L3)				
CO4	Solve the partial partial differential equations of first order (L3)				
CO5	Apply double integration techniques in evaluating areas bounded by region (L3).				

ENGINEERING PHYSICS

(Semiconductor Physics & Semiconductor Optoelectronics)(Common for AI&ML,CSA,CSB,CSD,CSE,CST,EEE&IT)

,,,	Semester I	,	
Subject Code	21EEPHT1020	IA Marks	30
Number of LectureHours/Week	03	ExamMarks	70
Total Number of Lecture Hours	50	ExamHours	03
	Credits – 03		
 COURSE OBJECTIVES: The objectives of this course, help th To impart the knowledge of conducting mechanism in so To understand the physics of their utility. Unit -1 Quantum Mechanics: Dual nature wave function, Schrodinger time in one dimensional infinite potential w Free Electron Theory and Band (Qualitative with discussion of electron theory, Equation forelectric electron theory, Fermi-Dirac distrenergy; Band theory of Solids -B (Qualitative) Effective means of alexistic of the provide the	ne students of Quantum mechanic lids. of semiconductors ar of matter, Significan ndependent wave eq rell. I theory: Classical merits and demer ical conductivity bas ibution, Density of Bloch's theorem; Kro	cs forunderstanding th nd theirworking mecha nce and properties of uations, Particle in a free electron theory its), Quantum free sed on quantum free f states (3D), Fermi onig - Penney model	e unism for Hours –12
(Qualitative), Effective mass of elec	ctron.		
Semiconductors: Introduction; Intr carriers, Electrical conductivity, I density of charge carriers, deper concentration and temperature; Drift equation; Hall effect- Hall coefficient Unit – 3 Light interaction with matter emission and stimulated emiss	rinsic semiconductor Fermi level; Extrin endence of Fermi ft and diffusion curr nt- Applications of H : Stimulated abso ion Einstein coef	rs- Density of charge sic semiconductors- energy on carrier rents- Einstein's Iall effect. rption, spontaneous	Hours –11
inversion, Characteristics of lasers, Ne laser, Direct and indirect band ga bulk semiconductors Construction applications.	Pumping mechanis ap semiconductors, (and working of la	ms- Ruby laser, He- Optical transitions in aser diode and their	Hours -10
Unit – 4	diadaa (IED-)	Intertion Elect	
luminescence; Construction and wo Internal efficiency, Extraction e conversion efficiency, Responsivity Hetero structure and its importa ELED'S, applications of LEDs.	orking of LED, chara officiency, External & I V characterist ance, LED configu	Efficiency, Power icteristics of LED's - Efficiency, Power ics, Double junction rations-SLED's and	Hours –9
Unit – 5 Photo diados: Introduction cons	truction and work	ng principle of DN	
photodiode, P-i-N photodiode, and IV characteristics, Photovoltaic effect, construction an efficiency of solar cell.	Avalanche photodic	bde (APD), and their r cell, fill factor and	Hours 8

COURSE OUTCOMES:

On completion of the course student will able to

- 1. **Distinguish** the various harmonic motions and resonance.
- 2. Apply Newton's law of motion to understand the motions of mechanical systems.
- 3. Verify the invariance of Newton's equation of motion.
- 4. Understand the concept of conservative and non-conservativemotions.
- 5. **Formulate** the rigid body dynamics.
- 6. Study the structure- elastic property correlation under load within the elastic limits.

QUESTION PAPER PATTERN:

- 1. It will have 5 questions with internal choice.
- 2. Each question carries 14 marks. Each full question comprises sub questions covering alltopics under a unit.

TEXT BOOKS:

- 1. Introduction to Mechanics MK Verma.
- 2. A Text Book of Engineering Physics- M.N.Avadhanulu, 11e ,S.CHAND,

REFERENCE BOOKS:

- 1. S.L Gupta& D.L. Gupta, Unified physics
- 2. An Introduction to Mechanics D Kleppner & R Kolenkow
- 3. Principles of Mechanics JL Synge & BA Griffiths.
- 4. Engineering Physics- Ch. Srinivas, Ch. Sesubabu Cengagelearning.

WEB SOURCES:

- 1. W1: <u>http://www.physics.org/news.asp</u>
- 2. W2: http://www.phys.lsu.edu/newwebsite/lecturedemo/
- 3. W3: http://www.nptl.ac.in
- 4. W3: American Association of Physics Teachers[<u>http://www.aapt.org/</u>]
- 5. W3: Society of Physics Students [http://www.aip.org/education/sps/sps.htm]

ENGINEERING CHEMISTRY Semester I			
Subject Code	21CMCHT1030	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
	Credits – 03	I	
 COURSE OBJECTIVES: The objectives of this course, help the 1. Explain the mechanism of corri 2. Interpret various boiler trouble 3. Learn preparation of semicond applications 4. Acquire knowledge on noncom 5. Know various spectroscopic te 6. Acquire knowledge on volume 	students to rosion as and importance of wate lucting materials, nano m eventional energy resource echniques. etric analysis.	er quality standards. aterials and liquid crystal es and different types of b	s – their patteries
Module-1			Hours
Electrochemistry and Corrosion Electro chemistry: Introduction, elec and Calomel electrodes, Nernst equati Corrosion: Introduction, Mechanism proper designing, cathodic protection- cathodic protection.	trode potential, standard on and applications. of Wet chemical corrosic Sacrificial anodic and in	electrodes – Hydrogen on, control methods – npressed current	9
Module -2			
Water Chemistry and Surface Prop Water chemistry: Surface and subsur total dissolved salts, chloride content, hardness, Units, determination of hard Caustic Embrittlement, Priming and for chlorination. Surface properties: Determination of	erties face water quality param Hardness of water, Temp ness by complexometric paming, Boiler corrosion f surface tension and visc	neters – turbidity, pH, porary and Permanent method. Boiler troubles, . Break point osity of liquids.	9
Module -3			
Material Chemistry Non-elemental semiconducting ma chalcogen photo/semiconductors and refining, Czochralski crystal pulling, Liquid crystals: Introduction, types Nanoparticles: Introduction, prepara reduction method – Preparation of ca deposition and laser ablation method	terials: Stoichiometric, c preparation of semicond epitaxy, diffusion and io and applications. ation methods – Sol-gel n arbon nanotubes (Arc disc s) properties and applicat	controlled valency and luctors (distillation, zone n implantation). nethod, Chemical charge, chemical vapour tions.	10

Modu	ıle – 4		
ENER Non-cc Design cell, hy conver Batter Lithiur acid an	GY SOURCES: onventional energy sources, , working, schematic diagram, advantages and disadvantages of photovoltaic rdropower, geothermal power, tidal and wave power, ocean thermal energy sion. ies and fuel cells: Primary and secondary batteries - Dry cell, Lead Acid Cell, n ion battery and Zinc air cells and fuel cells - H ₂ -O ₂ , CH ₃ OH-O ₂ , Phosphoric d molten carbonate.	10	
Modu	ıle – 5		
SPEC ⁷ Region spectro diatom rotator. Princip Princip	TROSCOPY AND CHROMATOGRAPHY TECHNIQUES s of electromagnetic spectrum - Principles of vibrational and rotational scopy. Vibrational and rotational spectroscopy of diatomic molecules: Rigid ic molecules - selection rule - simple Harmonic Oscillator - diatomic vibrating Nuclear magnetic resonance – le and Instrumentation. les of chromatography – Thin Layer & Paper Chromatography.	10	
COU	RSE OUTCOMES: On completion of the course student will be able to		
CO1	Interpret the mechanism of corrosion		
CO2	CO2Summarize the problems faced in industries due to boiler troubles.		
CO3	Recall the properties and applications of advanced materials.		
CO4	Summarize the advantages of non-conventional energy resources and batteries.		
CO5	Able to gain knowledge on spectroscopic techniques and the ranges of the electromagnetic spectrum used for exciting different molecular energy levels.	umantal	
000	analysis	umentai	
TEX	T BOOKS / REFERENCE BOOKS:		
T1	P.C. Jain and M. Jain " Engineering Chemistry ", 15/e, Dhanpat Rai & Sons, De (Latest edition).	elhi,	
T2	Shikha Agarwal, " Engineering Chemistry ", Cambridge University Press, New (2019).	Delhi,	
Т3	S.S. Dara, "A Textbook of Engineering Chemistry", S.Chand & Co, (2010).		
<u>T4</u>	Shashi Chawla, "Engineering Chemistry", Dhanpat Rai Publicating Co. (Latest	edition).	
T5	Fundamentals of Molecular Spectroscopy, by C. N. Banwell.		
R1	R1 K. Sesha Maheshwaramma and Mridula Chugh, " Engineering Chemistry ", Pearson India Edn.		
R2	O.G. Palana, " Engineering Chemistry ", Tata McGraw Hill Education Private I (2009).	Limited,	
R3	CNR Rao and JM Honig (Eds) " Preparation and characterization of materia Academic press, New York (latest edition)	ls"	

PROGRAM	PROGRAMMING FOR PROBLEM SOLVING Semester I		
Subject Code	21CMCST1040	IA Marks	30
Number of Lecture hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits -03		
 Course Objectives: The Objectives of Programming for problem solving are: To learn about C programming language syntax, semantics, and the runtime environment. To be familiarized with general computer programming concepts like data types, conditional statements, loops and functions. To be familiarized with general coding techniques and procedure-oriented 			
UNIT I			Hours
History& Hardware: (TB 1: 1-22 Types ofSoftware, Memory Units. Introduction to Problem solving Characteristics of Algorithms, Bas Code, Flowchart, Types of Langua Information, Input and Output. Basics of C: (TB1:58-67)History Procedural Language, Compiler ve Program, Program Development S UNIT II	2) Computer Hardware, :(TB1:33-50) Algorithm ic Operations of Algorithm ages, Relation between I and Features of C, Imponersus Interpreter, Structures teps, Programming Error	Components, n, hms, Pseudo Data, ertance of C, ure of C ors.	10
UNIT IIOverview of C:(TB:68-125) Character Set, C-Tokens, Data Types, Variables, Constants, Operators, Operator Precedence and Associativity, Converting Mathematical Expressions to C-expressions, Evaluation of C- Expressions, Input/Output Functions. Conditional Branching:(TB1:143-152) if statement, ifelse statement, Nested ifelse statement, ifelseif ladder, switch statement. Unconditional Branching:(TB1:174-175) goto. Control flow Statements: break, continue. Looping Constructs:(TB1:156-170) do-while statement, while statement, for statement.10UNIT IIIUNIT III		10	
UNIT III Arrays:(TB1:188-222) Introduction, 1-D Arrays, Character arrays and string representation, 2-D Arrays (Matrix), Multi-Dimensional Arrays. Strings: Working with Strings, String Handling Functions (both library and user defined). Functions:(TB1:230-260) Basics, Necessity and Advantages, Types of Functions, Parameter Passing Mechanisms, Recursion, Storage Classes, Command Line Arguments, Conversion from Recursion to Iteration and Viag Varue		8	

UNIT I	V		
Pointer Pointer Pointers Introduc (), free (Structur Advanta Structur Defining U Enumer	s:(TB1:288-347) Understanding Pointers, Pointer Expressions, and Arrays, and Strings, Pointers to Functions. Dynamic Memory Allocation: etion to Dynamic Memory Allocation- malloc (), calloc (), realloc (). res and Unions:(TB1:370-394) Defining a Structure, typedef, age of Structure, Nested Structures, Arrays of Structures, res and Arrays, Structures and Functions, Structures and Pointers, g Unions, Union within Union, Structure within Union, nion within Structure, Self-Referential Structures, Bitfields, ations.	12	
UNIT V	7		
Preprod Inclusio Compila File Ma Modes a Operatio	cessing Directives:(TB2:325-333) Macro Substitution, File on, Conditional ation and Other Directives magement In C:(TB1:408-422) Introduction to File Management, and ons on Files, Types of Files, Error Handling during I/O Operations. ks/ Reference Books:	10	
T1	Programming in C. Pradin Dev. Manas Ghosh, OXFORD		
T2	Programming in ,C Reema Thareja, Second Edition, OXFORD		
T3	Programming for Problem Solving, Behrouz A. Forouzan, Richard CENGAGE.	F. Gilberg,	
R1	Computer Fundamentals and Programming, Sumithabha Das, Mc C	Graw Hill.	
R2	R2 Programming in C, Ashok N. Kamthane, Amit Kamthane, Pearson		
Course O	utcomes: Student can able to		
CO1	Demonstrate computer components, algorithms, translate them into	programs.	
CO2	Choose thesuitable control structures for the problem to besolved.		
CO3	Make use of arrays, pointers, structures, and unions effectively.		
CO4	Organize reusable code in a program into functions.		
CO5	Demonstration of file operations.		

ENGI	NEERING GRA	PHICS		
(Common to CE,EE &ME)				
	Semester I	1		
SubjectCode	21EEMET1050	IA Marks		
Number of Lecture Hours / Week	1(L)+04(P)	ExamMark	8	
Total Number of Lecture Hours	50	ExamHours	s 03	
Credits – 03				
COURSE OBJECTIVES: On successful completion of the c 1. construct polygons, scales, e cycloids, involutes) 2. draw orthographic projection	ourse, s tudents shoul ngineering curves (pa s of points, lines and p	d be able to rabola, ellipse, hyperb lanes.	ola,	
 draw the orthographic projec draw sectional views of solid convert given isometric view software. 	tions of simple solids s into orthographic view	wand vice versa using A	AutoCAD	
Unit -1			Teaching Hours	
Introduction to Engineering Drawi	ng covering Principles	s of Engineering		
Graphics and their significance, us	age of drawing instru	ments, lettering,		
Conic sections – Ellipse, Parabola,	Hyperbola (Eccentr	ricity method	10	
only); plain				
Cycloid, and Involutes; Scales – F	Plain and Vernier scale	es only.		
Unit -2	- f (
Projections of Points, Projections	of straight lines	(inclined to one	08	
reference plane only)	s, Flojections of planes	s (inclined to one	08	
$\frac{\text{Unit} - 3}{\text{Unit} - 3}$				
Projections of regular polyhedrons	s – tetrahedron.hexahe	edron, octahedron		
(axisinclined to one reference plan	e only).	<i>•••••••••••••••••••••••••••••••••••••</i>		
		<i>a</i> 1	08	
Projections of irregular polyhedro	ns – Prisms, Pyramids	s, Cones and		
Cylinders(axis inclined to one				
reference plane only).				
Unit – 4 Sectional Views of Dickt Anoular	Calida accordina			
Prism Cylinder Pyramid and Con	Solids covering		12	
Unit - 5	6			
Introduction to AutoCAD - The I	Menu System, Toolba	rs (Standard, Object		
Properties, Draw, Modify and Dim	ension Tools), Drawin	ng Area		
(Background, Crosshairs, Coordina	ate System), Dialog bo	oxes and Windows.		
Isometric Projections, Principles of	f Isometric projection	– Isometric Scale,	12	
Isometric Views, Conventions; Iso	metric Views of lines,	, Planes, Simple and		
compound Solids; Conversion of I	sometric Views to Or	rthographic		
views and vice-versa.				

COURSE OUTCOMES:

On the successful completion of this course, the students will be able to

- 1. construct polygons, scales and engineering curves
- 2. draw the orthographic views of points, lines and planes
- 3. construct the projections of regular and irregularpolyhedrons
- 4. draw the sectional views of solids
- 5. draw isometric/orthographic views using AutoCAD

Text/Reference Books

- 1. N.D. Bhatt, Engineering Drawing, CharotarPublications
- 2. R.B.Choudary, Engineering Drawing, AnuradhaPublishers
- 3. Agarwal & Agarwal, Engineering Drawing, TataMcGraw Hill Publishers
- 4. K.L.Narayana & P.Kannaiah, EngineeringDrawing, Scitech Publishers
- 5. K.C. John, Engineering Graphics for Degree, PHIPublishers
- 6. PI Varghese, Engineering Graphics, Mc GrawHillPublishers
- 7. K Venugopal, V. Prabhu Raja, EngineeringDrawing + AutoCAD, New Age

ENGINEERING PHYSICS LAB (Common to AI &ML,CSA,CSB,CSD,CSE,CST,EEE & IT)				
	Semester I			
Subject Code	21EEPHL1060	Internal Marks	15	
Number of Practice Hours/Week	03	Exam Marks	35	
Total Number of Practice Hours36ExamHours03				
Credits – 1 5				

COURSE OBJECTIVES:

The objectives of this course, help the students

- **To apply** the theoretical knowledge of Physics throughhands on the experimental instruments.
- To improve the experimental knowledge in the laterstudies.
- **To understand** the basic need of experiments.
- To know how to measure the different physical quantities.
- **To gain** the knowledge about different electrical components and basic electrical circuits.

List of Experiments

- 1. Determination of the Fermi energy of copper using meterbridge.
- 2. Determination of the Energy band gap of P-N junctiondiode.
- 3. Study of the spectral response of photo cell-Planck's constant.
- 4. Study of V-I characteristics of LED (Light Emitting Diode) and to determine knee voltage, frequency of thelight emitting diode.
- 5. Determination of the frequency of electrical vibrator-Melde's experiment.
- 6. Determination of the wavelength of Laser diode using diffraction.
- 7. Determination of the V-I characteristics of photo diode andto find the variation of photo current as a function of light intensity.
- 8. Study of the characteristics of a photo voltaic cell (Solarcell) and to find Fill factor and efficiency.
- 9. Study of the V-I characteristics of Semiconductor diode, and to determine barrier potential and forward resistance.
- 10. Study of the I/V Characteristics of Zener diode.

Demonstration experiments:

1. Determination of the resistivity of a semiconductor using four probes method.

2. Estimation of the Hall coefficient of a semiconductor-Halleffect.

COURSE OUTCOMES:

On completion of the course student will able to

- 1. **Compare** the theory and correlated with experiments.
- 2. **Design** experiments.
- 3. Analyze the experimental result.
- 4. **Apply** appropriate techniques to perform the experiments.
- 5. Understand the interaction of the light withsemiconductor.
- 6. Study the characteristic curves of the optoelectronicsemiconductor devices.

TEXT BOOKS:

1. "Physics Laboratory Manual" Prepared by Department of Physics, SITE.

REFERENCE BOOKS:

- 1. S. Balasubrahmanian, M.N. Srinivasan 'A Text book of Practical Physics''- S. Chand Publishers, 2017.
- 2. Advanced Practical Physics Vol 1& 2 SP Singh & M.S Chauhan Pragati Prakashan, Meerut

ENGINEERING CHEMISTRY LABORATORY (Common to All) Semester I			
Subject Code	21CMCHL1070	IA Marks	15
Number of Practice Hr/Week	3	Exam Marks	35
Total Number of Practice Hr	36	Exam Hours	03
Credits _ 1 5			

List of Experiments

(Any 10 experiments must be conducted)

Determination of HCl using standard Na2CO3 solution

Determination of alkalinity of a sample containing Na2CO3 and NaOH

Determination of surface tension

Determination of viscosity of a liquid by Ostwald viscometer

Determination of chloride content of water

Determination total hardness of water by EDTA. Determination of

Mg⁺²using standard oxalic acid solution.Determination of Cu⁺²using standard hypo solution.

Determination of the rate constant of first order reaction (Ester hydrolysis)Determination of strength of strong acid using conductometeric titration. Determination of strength of weak acid using conductometeric titration . Determination of Ferrous iron using potentiometer. Chemical oscillations- Iodine clock reactionEstimation of Vitamin C.

Demonstration Experiments

Thin Layer Chromatography

Determination of $Fe^{+3}by$ a colorimetric method.

Question paper pattern:

Ten questions are given, and student should choose one question (blind option), which carries 50 marks in total.

a. 10 marks are allotted for procedure including circuit diagrams and model graphs.

b. 10 marks for conduction of the experiment.

c. 05 marks for results and conclusions. 10 marks for viva voce.

PROGRAMMING FOR PROBLEM SOLVING LAB

Semester 1				
Subject Code	21CMCSL1080	IA Marks	15	
Number of Lecture hours/Week	3	Exam Marks	35	
Total Number of Lecture Hours	48	Exam Hours	03	

Credits -1.5

Course Objectives:

- 1. To understand the various steps in Program development.
- 2. To understand the basic concepts in C Programming Language.
- 3. To learn how to write modular and readable C Programs.
- 4. To learn to write programs (using structured programming approach) in C to solve problems.
- 5. To introduce basic data structures such as lists, stacks and queues.

Exercise 1 (Familiarization with programming environment)

- a) Familiarization of CODE BLOCKS C++ Editor to edit, compile, execute, test and debugging C programs.
- b) Familiarization of RAPTOR Tool to draw flow charts and understand flow of control.
- c) Acquaintance with basic LINUX commands.

Exercise 2 (Simple computational problems using arithmetic expressions)

- a) Write a C Program to display real number with 2 decimal places.
- b) Write a C Program to convert Celsius to Fahrenheit and vice versa.
- c) Write a C Program to calculate the area of triangle using the formula area = $\sqrt{(s(s-a)(s-b)(s-c))}$ where s=a+b+c/2.
- d) Write a C program to find the largest of three numbers using ternary operator.
- e) Write a C Program to swap two numbers without using a temporary variable.

Exercise 3 (Problems involving if-then-else structures)

- a) Write a C Program to check whether a given number is even or odd using bitwise operator, shift operator and arithmetic operator.
- b) Write a C program to find the roots of a quadratic equation.
- c) Write a C Program to display grade based on 6 subject marks using if...else...if ladder.
- d) Write a C program, which takes two integer operands and one operator form the user, performs the operation and then prints the result using switch control statement.(Consider the operators +, -,*,/, %)

Exercise 4 (Iterative problems)

- a) Write a C Program to count number of 0's and 1's in a binary representation of a given number.
- b) Write a C program to generate all the prime numbers between two numbers supplied by the user.
- c) Write a C Program to print the multiplication table corresponding to number supplied as input

Exercise 5 (Iterative problems)

- a) Write a C Program to Find Whether the Given Number is i)Armstrong Number ii) Palindrome Number
- b) Write a C Program to print sum of digits of a given number

Exercise 6 (Series examples)

- a) Write a C Program to calculate sum of following series
- b) 1+2+3+...n b)1+1/2+1/3+....+1/n c)1+x+x2+x3....+xn

Exercise 7 (1D Array manipulation)

- a) Write a C program to interchange the largest and smallest numbers in the array.
- b) Write a C program to search an element in an array (linear search).
- c) Write a C Program to print the following pattern using a character array SA SAS SASI

Exercise 8 (Matrix problems, String operations)

- a) Write a C program to add two matrices.
- b) Write a C program to multiply two matrices if they are compatible or print an error message "incompatible matrix sizes" otherwise.
- c) Write a C program to check given matrix is symmetric or not.
- d) Implement the following string operations with and without library functions. i)copy

ii) concatenate iii) lengthiv) compare

Exercise 9 (Simple functions)

- a) Write a C Program demonstrating the following function types
 - i. With arguments and with return value.
 - ii. With arguments and without return value.
 - iii. Without arguments and without return value.
 - iv. Without arguments and with return value.
- b) Write a C Program illustrating call by reference.

Exercise 10 (Recursive functions)

a)

Write a C Program illustrating the following with Recursion without Recursion

Factorial b) GCD c) Power d) Fibonacci

Exercise 11(Pointers and structures)

a) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc () function.

b) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc () function.

Note: Understand the difference between the above two programs.

c)Write a C Program to read and print student details using structures.

Exercise 12 (File operations)

a) Write a C program to open a file and to print it contents on screen.

b) Write a C program to copy files.

- c) Write a C program merges two files onto a new file.
- d) Write a C program to delete a file.

Cours	se Outcomes:
CO1	Attain knowledge on using CODE BLOCKS and RAPTOR tools in solving problems.
CO2	Examine and analyze alternative solutions to a problem.
CO3	Design an algorithmic solution to a problem using problem decomposition and step- wise
	refinement.
CO4	Demonstrate conversion of iterative functions to recursive and vice-versa.

CO5 Implement the concepts of arrays, structures, Unions and files.

CONSTITUTION OF INDIA,	PROFESSIONAL	ETHICS &	HUMAN RIGHTS
	(11 D 1	``	

(Common to all Branches)				
	S	Semester I		
Subj	ect Code	21CMMST2090	IA Marks	30
Nun	ber of Lecture Hours/Week	03	Exam Marks	70
Tota	l Number of Lecture Hours	50	Exam Hours	03
	С	redits – 00		
CO	URSE OBJECTIVES:			
The	objectives of this course help the stu	udents to		
1. T	o provide basic information about Ir	ndian constitution.		
2. To	o identify individual role and ethical	l responsibility tow	ards society.	
3. To	o understand human rights and its in	nplications.		
Unit	t - I			
Intro	oduction to the Constitution of India	, The Making of the	e Constitution	10
and	Salient features of the Constitution.			10
Prea	mble to the Indian Constitution Fun	damental Rights &	its limitations.	
Unit	t - II			
Dire	ctive Principles of State Policy & R	elevance of Directi	ve Principles	
State	e Policy Fundamental Duties.		~	10
Unic	on Executives – President, Prime Mi	inister Parliament S	upreme Court	
of Ir	idia.			
Unit				
State	e Executives – Governor, Chief Min	ister, State Legislat	ure High Court	10
of S	tate. Electoral Process in India, Am	endment Procedure	es, 42nd, 44th,	
/4th	, /6th, 86th &91 ^{ar} Amendments.			
Unit			<u>C1 '1 1 0</u>	
Spec	cial Provision for SC & S1 Special I	Provision for Wome	en, Children &	
Baci	ward Classes Emergency Provision	18.	ifia Thomas in	
	an Rights – Werking of National Hu	is, Legislation Spec	inc Themes in	10
Pow	ers and functions of Municipalities	Panchyats and Co	Operative	
Soci	Societies			
Unit	t – V			
Scot	be & Aims of Engineering Ethics R	esponsibility of En	oineers	
Imp	ediments to Responsibility Risks S	afety and liability of	of Engineers	10
Hon	esty. Integrity & Reliability in Engi	neering.	i Liigineers,	10
FEX	T BOOKS / REFERENCE BOOI	KS		
T1	Durga Das Basu: "Introduction to	the Constitution	on India". (Stude	nts Edn.)
	Prentice –Hall EEE. 19th / 20th Ed	ln 2001	, (2000	
T2	Charles E. Haries, Michael S Pritch	hard and Michael J.	Robins "Enginee	ering
	Ethics" Thompson Asia, 2003-08-	05.	8	8
T3	M.V.Pylee, "An Introduction to Co	onstitution of India'	', Vikas Publishin	g, 2002.
	. .		, ,	0,
R1	M.Govindarajan, S.Natarajan, V.S.	.Senthilkumar, "En	gineering Ethics ²	", Prentice –
	Hall of India Pvt. Ltd. New Delhi,	2004	2 0	-
R2	Brij Kishore Sharma," Introductio	on to the Constitut	tion of India", PH	II Learning
	Pvt. Ltd., New Delhi, 2011.			Ũ
R3	Latest Publications of Indian Instit	ute of Human Righ	ts, New Delhi	

R3 Latest Publications of Indian Institute of Human Rights, New Delhi

COU	RSE OUTCOMES: On completion of the course student will
CO1	Have general knowledge and legal literacy and thereby to take up competitive examinations.
CO2	Understand state and central policies, fundamental duties.
CO3	Understand Electoral Process, special provisions.
CO4	Understand powers and functions of Municipalities, Panchayats and Co-operative Societies, and
CO5	Understand Engineering ethics and responsibilities of Engineers
CO6	Understand Engineering Integrity & Reliability

TEC	HNICAL ENGLISH		
Subject Code	21CMECT 2010	IA Mortza	20
Number of Lecture Hours/Week	21CMEGI 2010	Exem Morks	<u> </u>
Total Number of Lecture Hours	50	Exame Hours	03
Total Number of Lecture Hours	Credits -03	Exams Hours	03
Course Objectives:			
To enable the students to learn and a	pply fundamental princi	ples in Technical Eng	lish &
Communication by focusing on:			
1. Technical English Vocabular	у		
2. Writing Skills			
3. Common Errors in Writing			
4. Nature and Style of Sensible	Technical Writing		
5. Writing Technical Reports ar	nd Letters		
Principles of Scientific Vocabulary	, 		
Principles of Scientific vocab	ulary: short and simple	words-compact	
substitutes for wordy phrases	- redundant words and e	expressions-Avoid	10
hackneyed and stilted phrases	s, verbosity and incorrec	t use of words	hours
• The role of roots in word built	lding, prefixes and suffix	xes, confusing	
words and expressions.			
Unit II			
Writing Skills			
• Distinguishing between acad	emic and personal styles	of writing	
• Use of clauses in technical pl	prases and sentences	U	10
Techniques of Sentence and 1	paragraph writing		hours
 Measuring the elevity of a tay 	atagraph witting	Clarity Inday	
• Measuring the clarity of a tex	t unrough rog maex or		
Unit III Common Ennous in Whiting			
Common Errors in writing			
• Subject-verb agreement and	concord of nouns, prono	ouns and possessive	
adjectives		l'	10
Common errors in the use of adverbs	articles, prepositions, ad	jectives and	hours
Punctuation			nours
 Technical Guidelines for Cor 	nmunication		
 Avoiding the pitfalls 	innumeation		
Unit IV			
Nature and Style of Sensible Tech	nical Writing		
Academic Writing Process	8		10
 Describing processes and pr 	oducts		10
 Defining Classifying 	ouuous		hours
• Effective use of charts, graph	s. and tables		
Unit V	-,		
Report writing and Letter writing			
Writing Technical Reports			10
Précis writing			10
• Letter Writing			Hours
• Essay writing			

Text Books

1. Effective Technical Communication by Barun K Mitra, Oxford University Publication

Non-detailed Text

1. Karmayogi: A Biography of E Sreedharan by M S Ashokan

Reference Books

- 1. Communication Skills by Sanjay Kumar & Pushpa Latha, OUP
- 2. Study Writing by Liz Hamp-Lyons and Ben Heasly, Cambridge University Press.
- 3. Remedial English Grammar by F T Wood, Macmillian 2007
- 4. Practical English Usage by Michael Swan Oxford University Press
- 5. English Collocations in Use by Michael McCarthy & Felicity O'Dell
- 6. Effective Technical Communication by Arsahf Rizvi,
- 7. Essential English Grammar by Raymond Murphy, CUP, 2017

ENGIN	EERING MATHE	CMATICS-II		
(Linear algebra, l	Laplace transforms	& Numerical Met	hods)	
C	common to all the br	anches		
Subject Code	21CMMAT2020	IA Marks		30
Number of Lecture Hours/Week	21CIVIIVIA12020	IA Warks		70
Total Number of Lecture Hours	50			70
Total Number of Lecture Hours	50	Exam Hours		03
~	Credits – 03			
Course objectives:		, 		
To enable students to apply the ki	nowledge of Mather	natics in various e	engineerii	ng
The develop the use of met	e Iollowing riv. algebra taabniqu	as that is pooled l	buonging	ore for
1. To develop the use of filat	solve system of line	es that is needed i	by engine	
2 To find the inverse and po	solve system of ametrix by	Cavley-Hamilton	theorem	and reduce
the Quadratic form		cayley-mailmeon		
3 To solve initial value prob	lems by using Lapla	ace transforms		
4. To find the solution of alg	ebraic/ transcendent	tal equations and a	also inter	polate the
functions.		1		I · · · · · · ·
5. To apply different algorith	nms for approximati	ng the solutions o	f ordinar	У
differential equations with	initial conditions to	o its analytical cor	nputation	is.
Unit -1				Hours
Solving systems of linear equati	ons: Rank of a mat	ix by echelon for	m and	
normal form – Solving system of	homogeneous and r	ion homogeneous	linear	10
equations – Gauss Elimination me	ethod- Jacobi and G	auss-Seidel metho	ods for	10
solving system of equations nume	erically.			
Unit -2			<u>.</u>	
Eigen values and Eigen vectors,	Cayley-Hamilton	theorem and		
Quadratic forms: Eigen values a	nd Eigen vectors an	d properties- Cay	ley-	
Hamilton theorem (without proof) – Reduction to Di	agonal form – Qu	adratic	10
forms and nature of the quadratic	torms – Reduction	of quadratic form	to	-
canonical forms by orthogonal tra	insformation, Diago	nalisation and		
Lagrange's reduction				
$\frac{1}{2}$		1 7 1		
Laplace Transforms: Laplace tra	ansforms – Definition	on and Laplace	- f	
derivatives and integrals Unit at	ons- Sinting theore	ans – Transforms	oriodia	
function Inverse Laplace transfo	orms Convolution	theorem (without	proof)	10
Applications: Solving ordinary di	fferential equations	(initial value prob	proor).	
using Laplace transforms	fierential equations	(initial value prot	Jenns)	
		· NT		
Numerical Methods: Introduction	on - Method of false	position - Newton	1-	
intermolation Einite differences	Entroduction – Errors	a Deeleward		
differences Central differences	Polytions between	operators Newt	on's	10
forward and backward formulae f	or interpolation – In	terpolation with r	megual	
intervals – Lagrange's interpolation	on formula.		mquai	
Unit – 5				
Numerical integration Solution	of ordinary differ	ential equations	with	
initial conditions: Trapezoidal ru	ile - Simpson's 1/3r	d and 3/8th rule -	** 1111	10
Solution of initial value problems	by Taylor's series-	Picard's method	of	<u>-</u> v

succes	sive approximations– Euler's method – Runge -Kutta method (second
and fo	urth order).
Cours	e outcomes: On completion of this course, students are able to,
CO1	Develop the use of matrix algebra techniques that is needed by engineers for
	practical applications and solve system of linear equations (L6)
CO2	Find the inverse and power of a matrix by Cayley-Hamilton theorem and reduce the
	Quadratic form (L3)
CO3	Solve initial value problems by using Laplace transforms (L3)
CO4	Find the solution of algebraic/ transcendental equations and also interpolate the
	functions(L3)
CO5	Apply different algorithms for approximating the solutions of ordinary differential
	equations with initial conditions to its analytical computations (L3).
Text H	Books / Reference Books:
T1	B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44 th Edition,
	2016.
T2	Kreyszig, "Advanced Engineering Mathematics " - Wiley, 9 th Edition, 2013.
T3	B.V.Ramana "Higher Engineering M athematics" Tata Mc Graw-Hill, 2006
R1	Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering
	Mathematics, Volume II" Scitech Publications, 2017.
R2	Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering and
	Science, Tata McGraw Hill Education, 4th Edition, 2018
R3	M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and
	Engineering Computation, New Age International Publications, 3rd Edition, 2020.
R4	Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition
	2014.

Basic E	Clectrical Engineering		
	Semester II		
Subject Code	21CMFFT2030	IA Marks	30
Number of Lecture Hours/Week	3L + 1T	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits-03	Exam Hours	05
Course Objectives:	cicults 05		
This course will enable student to			
1 Understand basic electrical cir.	cuit operation		
2 Understand the concept of Alte	ernating Voltage and Curre	nt	
3 Understand the operation of Γ	C machines		
4 Understand the working of me	essuring instruments		
5. Understand the operation of di	fferent types of ac machin	96	
6. Understand the concept of Elec	atrical Safaty	C 5.	
	ettical Salety.		IIauna
			nours
Basic Electrical Circuits: Basic def	finitions(Electric Charge,	Current,	
Electro Magnet Force, Potential Diffe	erence; Electric Power and	Energy) –	10
types of network elements – Ohm's I	Law – Kirchhoff's Laws –	series &	
parallel circuits - network theorems (Super position, Thevinen's	s, Norton's,	
Maximum power transfer theorems)			
Unit -2			
AC Fundamentals & Basic Electro Study of AC Voltage and Current, RI Star-Delta connections, Alternating V Inductance, Capacitance and their co Power Factor in AC Circuit. Concept of Magnetic Field, Magneto Self and Mutual Induction, Basic Ele	magnetic Laws: MS and Average Values, T Voltage applied to Pure Re mbinations, Concept of Po Motive Force (MMF), Per ectromagnetic laws,	Three phase sistance, ower and rmeability;	10
Unit – 3			
DC Machines: DC Machine -Principle of operation of equation - speed control methods – lo applications of DC motors.	& construction – emf equa	tion- torque e test.	10
Unit – 4			
AC Machines:			
Single Phase Transformers - Constr Classification - Applications-OC & regulation & Efficiency. Three Phase Induction Motors: work torque characteristics-losses and effi	ruction and Operation- Prin SC test of single phase trans king principle- construction iciency.	nciples - nsformer- n, speed-	Hours – 10
Unit – 5	·····		1
Electrical Safety: Electrical Shock a Electric Shock; Concept of Fuses and Application; Concept of Earthing.	and Precautions against it, 1 Their Classification, Sele	Treatment of ection and	Hours – 10

Text Bo	ooks / Reference Books:
T1	Electrical Circuit Theory and Technology by John Bird, Routledge Taylor
	&Francis Group.
T2	Principles of Electrical Machines by V.K. Mehta & Rohit Mehta, S.Chand and
	Company Limited.
R1	Theory and Performance of Electrical Machines by J.B. Gupta, S.K.Kataria &
	Sons.
R2	A Textbook of Electrical Technology – Volume II: AC & DC Machines by
	B.L.Theraja & A.K. Theraja, S.Chand and Company Limited.
R3	Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2nd
	edition.
R4	Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah, TMH
	Publications
R5	Fundamentals of Electrical Engineering by Rajendra Prasad, PHI Publications,
	2nd edition.
R6	Electrical Technology by Surinder Pal Bali, Pearson Publications.
Course	Outcomes: The student should be able to
CO1	Understand basic electrical circuit operation.
CO2	Understand the concept of Alternating Voltage and Current.
CO3	Understand the operation of DC machines.
CO4	Understand the working of measuring instruments.
CO5	Understand the operation of different types of ac machines.

PYTHON PROGRAMMING	
Semester II	
Subject Code21CMCST2040IA Marks	30
Number of Lecture hours/Week3Exam Marks	70
Total Number of Lecture Hours50Exam Hours	03
Credits -03	
 Course Objectives: The Objectives of Python Programming are: To learn about Python programming language syntax, semantics, and the ruenvironment. 	ntime
 To be familiarized with general computer programming concepts like data conditional statements, loops and functions. To be familiarized with general coding techniques and object-oriented programming and Graphical User Interfaces. 	ypes,
UNIT I	Hours
 Program Development Cycle, Input, Processing, and Output, Displaying Output with the Print Function, Variables, Reading Input from the Keyboard, Operators. Data Types, and Expression: (TB1:41-59) Strings Assignment, and Comment, Numeric Data Types andCharacter Sets, Type conversions, Expressions, Using functions and Modules. Decision Structures and Boolean Logic:(TB1:77-85) if, if-else, if-elif-else Statements, Nested Decision Structures, Comparing Strings, Logical Operators, Boolean Variables. 	10
UNIT II	
Control Statement:(TB1:65-72, TB1:86-91) Definite iteration for Loop Formatting Text for output, Selection if and if else Statement Conditional Iteration, The While Loop, Nested Loops. Strings and Text Files:(TB1:103-125) Accessing Character and Substring in Strings, Data Encryption, Strings and Number Systems, String Methods, Text Files.	8
List and Dictionaries:(TB1:135-145, TB1:153-158) Lists, Tuples, Sets, Dictionaries. Design with Function:(TB1:146-149, TB1:169-190) Functions as Abstraction Mechanisms, Problem Solving with Top-Down Design, Design with Recursive Functions, Case Study Gathering Information from aFile System. Modules: (TB2:8.1-8.5) Modules, Standard Modules, Packages.	8
UNIT IV	
File Operations: (TB1:122-123)Reading config files in python, Writing log files in python, Understanding read functions, read(), readline() and readlines(), Understanding write functions, write() and writelines(). Object Oriented Programming: (TB2:5.1-5.20, TB2:6.1-6.17) Concept of class, object and instances, Constructor, class attributes and destructors, Inheritance. Design with Classes: (TB1:294-301, TB1:309-330) Objects and Classes, Data modeling Examples, Case Study an ATM.	12
Errors and Exceptions: (TB2:7.1-7.8) Syntax Errors, Exceptions, Handling Exceptions, Raising Exceptions, User-defined Exceptions, Defining Clean-up Actions, Redefined Clean-up Actions.	12

Grapl	nical User Interfaces:(TB1:245-288) The Behavior of Terminal Based
Progra	ums and GUI -Based, Programs, Coding Simple GUI-Based Programs,
Other	Useful GUI Resources.
Text	Books / References:
T1	Fundamentals of Python First Programs, Kenneth. A. Lambert, Cengage.
T2	Python Programming: A Modern Approach, Vamsi Kurama, Pearson.
R1	Introduction to Python Programming, Gowrishankar.S, Veena A, CRC Press.
R2	Introduction to Programming Using Python, Y. Daniel Liang, Pearson.
W1	https://www.tutorialspoint.com/python3/python_tutorial.pdf
Cours	se Outcomes: After completion of this course student will able to learn
CO1	Explain thefundamental concepts in the Python language.
CO2	Implementation of python iterative statements and strings.
CO3	Demonstrate python lists, dictionaries, and functions.
CO4	Understand the concepts of modules and packages in python.
CO5	Complete coding challenges related to object-oriented programming.
CO6	Apply variety of error handling and GUI programming techniques.

ENGINEE	RING MECHANICS		
Subject Code	21EEMET2050	IA Marks	30
Number of Lecture	3(L)	Exam Marks	70
Hours/Week	50		02
Total Number of Lecture Hours	50	Exam Hours	03
Credits - 03			
 Course objectives On successful completion of the course, th 1. understand the effect of forces and rights 2. analyze static problems using free b 3. locate centroid and calculate mome 4. calculate velocity and acceleration of rotation 5. analyze dynamic problems using we method 	e students should be ab moments on the solid ri oody diagrams by consid nt of inertia for differen of particles having recti ork energy method and	le to gid bodies leringfriction. It crosssections. linearmotion and impulse-momentun	n
Unit -1			Hour
Introduction to engineering mechanics: of mechanics, characteristics of force, syst Resolution of forces, method of compositi concurrent force system, moment of a force Friction: Frictional force, laws of Coulom friction and angle of repose, problems on a resting on horizontal and inclined planes.	Basic terminologies in term of force. Resultant on of forces, resultant of e and couple. hb friction, angle of fric blocks	system of forces: of coplanar tion, limiting	10 Hours
Unit -2			<u> </u>
Equilibrium of system of forces : Equilicoplanar concurrent forces and coplanar concurrent forces, free body diagrams, L connected bodies.	ibrium of a rigid body non- ami's theorem,equilibr	subjected to ium of	9 Hours
Unit - 3			
Centroid and centre of gravity: Centre of determination of centroid of simple figures composite sections. Moment of inertia: Moment of inertia, per moment of inertia, moment of inertia of quarter circle from first principles, mome Mass moment of inertia, radius of gyratic rod, rectangular plate and circular plate on	f gravity, centroid, use s from first principles, c olar moment of inertia, rectangle,triangle, circ nt of inertia of L, T an on, mass moment of in ly.	of axis symmetry centroid of theorems of le, semi circle, d I sections only. nertia of uniform	12 Hours
Unit-4 Kinematics: General principles in dynami motion curves, motion with uniform veloc motion with varying acceleration, angular angular motions. Kinetics: Bodies in rectilinear translation, axes, Newton's second law of motion, E Alembert's principle.	ics, types of motion, rec ity, motion with uniform motion, relationship be kinetics of bodies rotat D-	etilinear motion, m acceleration, tween linear and ting about fixed	10 Hours

Unit - 5	
Work-Energy Method: Equation of Translation, work energy application to particle	0
motion, connected system - Fixed axisrotation and plane motion, Impulse	9
momentum method.	Hours
Course outcomes	
On completion of this course, students will be able to	
1. Determine resultant force and moment for different force systems.	
2. analyse the rigid bodies associated with frictional forces using conditions of equilibrium	of
3. Locate the centroid / center of gravity and determine the moment of inertia of	
planesections/solids.	
4. Understand the behavior of moving bodies in rectilinear motion and solve kinemati	ic
equations of motion curves.	
5. Solve the problem using work energy method and impulse momentum method.	
Text Books	
1. S.S. Bhavikatti and K.G. Rajashekarappa, Engineering Mechanics, New Age,	
2012.	
2. N.H. Dubey, Engineering Mechanics, Mc Graw Hill, 2012	
Reference Books	
1 F. L. Singer, Engineering Mechanics, Harper–Collins, 1994	
2. B. Bhattacharya, Engineering Mechanics, Oxford University Press, 2008	
3. A.K.Tayal, Engineering Mechanics, Umesh Publications, 2012.	
4. R.K.Bansal, Engineering Mechanics, Laxmi Publications, 1996.	
5. R.K.Rajput, A Text book of Applied Mechanics, Laxmi Publications, 2011.	
6. S.Timoshenko and D.H.Young, Engineering Mechanics, 4th Ed., McGraw Hill	
7. A.Nelson, Engineering Mechanics - Statics and Dynamics, TMG, NewDelhi, 2009.	
WEB REFERENCES	
W1. https://nptel.ac.in/coursesW2.	
http://learnmech.com/	

ENCLISH LANCHACE COMMUNICATION SKILLS LAB

٦

ENGLISH LANGUAGE C Se	OMMUNICATION 8 emester II	KILLS LAB
Subject Code	18CMEGL2050	IA Marks
Number of PracticalHr./week	02	ExamMarks
Total Number of Practical Hr	32	Exam Hours
С	redits – 01	
Objectives: To enable the students to learn c	communication skillsof	Listening, Speaking, Reading
and Writing by focusing on:		
Listening Comprehension		
Pronunciation		
• Functional English in formal and	Informal Situations	
Interpersonal Communication Ski	lls	
• Presentation Skills		
List of Experiments		
UNIT I: Listening Comprehension		
UNIT II: Pronunciation, Stress, Intonation	& Rhythm	
UNIT III: Common Everyday Situations: C	onversations & Dialogu	les, Communication at
Workplace		
UNIT IV: Interpersonal Communication Sk UNIT V: Formal Presentations	ills- Groupdiscussions	and debates
Outcomes:		
By the end of the course the students will be	able to acquire basicPr	oficiency in English by
practicing the following:		
Listening Comprehension, Pronur Skills ,Presentation Skills &Discu	nciation, Dialogues, Intensions and Debate	erpersonal Communication
Learning Resources:		
 Interact – English Lab Manual for 	UndergraduateStuden	ts by Orient Black Swan
• Ted Talks, Interviews with Achiev	vers and selectmovies	
• Toastmaster's speeches and table	topics	
• Book Reviews and movie reviews		

- Exercises in Spoken English Parts: I-III, CIEFL, Hyderabad. •
- Oxford Guide to Effective Writing and Speakingby John Seely •
- https://www.ted.com/talk •

Г

	Co	ommon for All	
		Semester II	
Subje	ct Code	21CMEEL1070/2070	IA Marks
Numb	ber of Lecture Hours/Week	3P	Exam Marks
Total	Number of Lecture Hours	36	Exam Hours
		Credits-1.5	
Cour	se Objectives:		
1	This course will enable the student to	с · · · ·	
1. 2	Verify the Kirchoff's laws, network the	eorems for a given circuit.	
2. 2	Analyze the performance of DC shuft	generator.	
<i>3</i> .	Control the speed of DC motor.		
4.	Predetermine the efficiency DC machin	1e.	
5.	Analyze performance of three phase inc	duction motor.	
6.	Determine the regulation of an alternate	ors.	
List of	Experiments(Any ten experiments m	ust be conducted)	
1.	Verification of Kirchoff's laws.		
2.	Verification of Thevenin's Theorem.		
3.	Verification of Norton's Theorem.		
4.	Verification of Superposition theorem		
5.	Verification of Maximum Power Tran	sfer Theorem.	
6.	Speed control of D.C. shunt motor.		
7.	Brake test on DC shunt motor.		
8.	Calibration of wattmeter.		
9. 10	OC & SC tests on single-phase transfo	ormer.	
10	Drake test on 1-phase induction motor		
11	. Drake test on 5-phase induction motor	1.	
12	2. Study experiment on Ear tilling.		
COUR	SE OUTCOMES: On completion of th	ne course student will be able	e to:
CO1	Verify the Kirchoff's laws.		
CO2	Verify network theorems for a give	n circuit.	
CO3	Control the speed of DC motor.		
CO4	Analyze performance of single phase	se induction motor	
CO5	Analyze performance of three phase	e induction motor.	
COG	Identify different types of earthings		

ENG	INEERING WORKSH	IOP LAB				
Subject Code	21FFMFL 2080		15			
Subject Code	21LLIVILL2000	IA Marks	15			
Number of Lecture	L(0)+T(0)+P(3)	ExamMarks	35			
Total Number of Lecture		ExamHours				
Hours	36	Examinours	3			
	Credita 15					
Course objectives: On completion	$\frac{1.5}{n \text{ of the course students}}$	should be able to				
1. Learn basic use of hand to	ols along with the techr	iques and methods				
applicable to the carpentry	trade					
2. Learn basic use of hand to	ols along with the techr	iques and methods				
applicable to the fitting trad	de					
3. Learn basic use of hand to	ols along with the techn	iques and methods				
applicable to the forging tr	ade					
4. Learn basic use of hand to	ols along with the techn	iques and methods				
applicable to the casting tra	ade					
5. Learn basic use of hand to	ols along with the techn	iques and methods				
applicable to the welding t	rade	-				
EXPERÎMENTS						
1. Preparation of T Lap joint	using carpentry.					
2. Preparation of Cross Lap jo	oint using carpentry.					
3. Preparation of Square fit using mild steel specimen.						
4. Preparation of V fit using r	nild steel specimen.	<i>.</i> •				
5. Conversion of round rod to square rod by forging operation.						
6. Preparation of S hooks by forging operation.						
7. Freparation of green and r	nould for a snigle piece	pattern				
8. Preparation of green said I	nould for a split piece p	attern				
9. Preparation of a Butt joint	using arc welding					
10. Preparation of a Lap joint t	ising arc welding					
ADDITIONAL EXPERIMENT	s ning connections using t	wining (anglamn agn	tuallad			
1. Preparation of electrical wi	ring connections using	wiring (one tamp con	troned			
2 Preparation of house wiring	a (stair case wiring)					
Course outcomes: On successful	g (stail case withig)	irea tha studentessi	ll be able to			
1 Derform the joinery work of	vooden nieges using ee	montry	li de able to			
2 Perform the joinery work of	metallic pieces using the	ting				
3. Produce the required shaped	metallic products using in	black smithy.				
4. Make the green sand moulds	using different patterns	onden sinning.				
5. Fabricate different component	nts using welding.					
Question paper pattern:						
Ten questions are given, and stude	ent should choose one qu	estion (blindoption)	, which			
carries 50 marks in total.						
a 15 marks are allotted for procedu	ure including circuit dia	grams and model gra	nhs			
b.15 marks for conduction of the e	experiment.	Status and model gra	P113.			
c 10 marks for results and conclus	ions					
d 10 marks for vivo voce	10110.					
u. 10 marks for viva voce.						

ENVIRONMENTAL SCIENCE						
	Semester II		I			
Subject Code	21CMESN1090/2090	IA Marks		30		
Number of Lecture Hours/Week	2	Exam Marks	5	70		
Total Number of Lecture Hours	32	Exam Hours		03		
	Credits – 00					
COURSE OBJECTIVES:	hudanta ta					
1 A cquire knowledge on global on	udents to					
1. Acquire knowledge on global en	vironmental chanenges.					
2. Learn different types of hatural f	esources					
3. Create awareness on biodiversity	y and ecology.					
4. Gain scientific knowledge on en	vironmental pollution					
5. Acquire knowledge on water cor	nservation methods and e	environmental	legisla	tion		
Module -1			Hours	S		
MULTIDISCIPLINARY NATURE C	OF ENVIRONMENTAI	L STUDIES				
Environment - Definition, Introduction	n - Scope and Importanc	e - Global				
environmental challenges, global warmi	ng & climate change - A	cid rains,	6	5		
ozone layer depletion - Role of Informat	ion Technology in Enviro	onment and				
human health.						
Module -2						
NATURAL RESOURCES						
Renewable and non-renewable resource	s – Natural resources and	l associated				
problems –						
Forest resources – Use, deforestation - 7	Timber extraction – Mini	ng, dams				
and other effects on forest and tribal peo	ople	-				
Water resources – Floods, drought, , dar	ns – benefits and problem	ns		-		
Mineral resources: Use and exploitation	, environmental effects o	f extracting	6	•		
and using mineral resources.	and using mineral resources.					
Food resources: Effects of modern agric	ulture - fertilizer-pesticio	le problems,				
water logging, eutrophication, biological magnification and salinity.						
Energy resources: Renewable and non-renewable energy resources						
Role of an individual in conservation of natural resources.						
Module – 3						
ECOSYSTEM AND BIODIVERSITY	ł					
Ecosystem - Concept of an ecosystem.	- Structure and function	of an				
ecosystem Producers, consumers and	decomposers Energy f	low in the				
ecosystem - Food chains, food webs and	l ecological pyramids]	ntroduction.				
types characteristic features structure and function of the Forest and						
grassland ecosystem						
Biodiversity - Introduction Definition	genetic species and acc	evetem	8			
diversity – Value of biodiversity: consumptive use productive use social						
ethical and optional values - Hot-spots ofbiodiversity - Threats to						
biodiversity: habitat loss - Endangered andendemic species of India –						
Conservation of biodiversity: In-situ and Ex-situ conservation of						
biodiversity.						
Module – 4						

EN	VIRONMENTAL POLLUTION					
De						
	a. Air pollution					
	b. Water pollution					
	c. Soil pollution					
	d. Noise pollution					
	e. Nuclear hazards					
So						
inc	lustrial wastes - Role of an individual in prevention of pollution.					
Ν	Iodule – 5					
SC	OCIAL ISSUES AND THE ENVIRONMENT					
Ur	ban problems related to energy -Water conservation, rain water					
ha	rvesting, Resettlement and rehabilitation of people its problems and	6				
co	ncerns. Environment Protection Act - Air (Prevention and Control of	U				
Po	llution) Act Water (Prevention and control of Pollution) Act -Wildlife					
Pro	Protection Act -Forest Conservation Act .					
TE	XT BOOKS / REFERENCE BOOKS:					
T1	E. Bharucha (2003), "Environmental Studies", University Publishing Com	pany, New				
Delhi.						
T2	T2 J.G. Henry and G.W. Heinke (2004), "Environmental Science and Engineering",					
Second Edition, Prentice Hall of India, New Delhi.						
T3 G.M. Masters (2004)" Introduction to Environmental Engineering and Science",						
Second Edition, Prentice Hall of India, New Delhi						
R1 Text Book of Environmental Studies by Deeksha Dave & P. Udaya Bhaskar, Cengage						
Learning.						
R2	K2 Environmental Studies by K.V.S.G. Murali Krishna, VGS Publishers, Vijayawada					
K5 Environmental Studies, P.N. Palaniswamy, P. Manikandan, A. Geeta and K. Manjula Rani Pearson Education, Chennai						
COURSE OUTCOMES: On completion of the course student will be able to						
CO1 Obtain knowledge on global warming & climate change - Acid rains. ozone laver						
depletion.		5				
CO2	CO2 Preserve several natural resources					
CO	3 Summarize the concept of ecosystem					
CO	CO4 Control different types of pollution					
CO	5 Understand social issues and environmental legislation					

Course Structure for II B. Tech I Semester Under the Regulations of SITE-21							
III SEMESTER							
S. No	Course	Course Code	Course Title				
	Category			L	Т	Р	С
1	BS	21CMMAT3010	Engineering Mathematics-III	3	0	0	3
2	PC	21EEEET3020	Electrical Circuits Analysis	3	0	0	3
3	PC	21EEEET3030	Analog Electronics	3	0	0	3
4	PC	21EEEET3040	Electrical Measurements &	3	0	0	3
			Instrumentation				
5	PC	21EEEET3050	DC Machines & Transformers	3	0	0	3
6	PC LAB	21EEEEL3060	Analog Electronics Lab	0	0	3	1.5
7	PC LAB	21EEEEL3070	Electrical Circuit Analysis Lab	0	0	3	1.5
8	PC LAB	21EEEEL3080	DC Machines & Transformers	0	0	3	15
			Lab	0	U	5	1.5
9	SOC	21EEEES3090	Electrical Wiring & Installation	1	0	2	2
10	MC	21EEEEN3100	Electromagnetic Fields	2	0	0	0
	TOTAL 18 0 11 21.5					21.5	

Course Structure for II B. Tech II Semester Under the Regulations of SITE-21							
IV SEMESTER							
S. No	Course Category	Course Code	Course Title	L	Т	Р	С
1	ES	21EEEET4010	Signals & Systems	3	0	0	3
2	PC	21EEEET4020	Digital Electronics	3	0	0	3
3	BS	21CMMAT4030	Engineering Mathematics-IV	3	0	0	3
4	PC	21EEEET4040	Induction & Synchronous Machines	3	0	0	3
5	HSS	21CMMST4050	Engineering Economics & Financial Management	3	0	0	3
6	PC LAB	21EEEEL4060	Digital Electronics Lab	0	0	3	1.5
7	PC LAB	21EEEEL4070	Electrical Measurements & Instrumentation Lab	0	0	3	1.5
8	PC LAB	21EEEEL4080	Induction & Synchronous Machines Lab	0	0	3	1.5
9	SOC	21EEEES4090	Design of Electrical Circuits using Engineering software tools	1	0	2	2
TOTAL			16	0	11	21.5	
10	H/M		Honor/Minor courses(The hours distribution can be 3-0-2 or 3-1-0)	4	0	0	4
Μ	ATHEMATICS-III						
---	---	-----------------------	-----------------				
(Vector Cal	lculus and Complex a	nalysis)					
Common to	CE, EEE, ME, ECE at	nd ECT					
	SEMESTER - II/I						
	SEMESTER III						
Subject Code	21CMMAT3010/20	IA Marks	30				
Number of Lecture Hours/Week	3	Exam Marks	70				
Total Number of Lecture Hours	48	Exam Hours	03				
	Credits – 03						
Course Objectives:							
1. To Interpret the physical meanin	g of different operators	such as gradient, c	url and				
divergence.							
2. To Estimate the work done agair	st a field, verify integra	al theorems.					
3. To apply Cauchy-Riemann equation	ons to complex function	s in order to determi	ne whether a				
given continuous function is analy	vtic						
4. To find the differentiation and inte	egration of complex func	ctions used in engine	ering problems.				
5. To make use of the Cauchy residu	e theorem to evaluate ce	ertain integrals.					
Unit -1		~ . ~ .					
Vector Differentiation: Gradient– Directio	nal derivative – Divergen	nce – Curl - Scalar	Hours – 08				
Potential.							
Unit -2							
Vector Integration: Line integral - W	fork done – Area - Su	rface and volume	Hours – 10				
integrals – Vector integral theorems:	Greens, Stokes and C	Gauss Divergence	Hours To				
theorems (without proof) and problems	on above theorems.						
Unit – 3							
Function of a complex variable							
Introduction – continuity – differentiability- analyticity – properties – Cauchy – Hours – 10							
Riemann equations in Cartesian and polar coordinates. Harmonic and conjugate							
harmonic functions – Milne – Thompson	n method.						
Unit – 4							
Integration and series expansions							
Complex integration: Line integral – Ca	uchy's integral theorem	n, Cauchy's in					
integral formula, generalized integral for	rmula (all without proo	fs) Radius of	Hours – 10				
convergence – expansion in Taylor's ser	ries, Maclaurin's series	and Laurent					
series.							
Unit – 5							
Singularities and Residue Theorem							
Zeros of an analytic function, Singularit	y, Isolated singularity, I	Removable					
singularity, Essential singularity, pole of	f order m, simple pole,	Residues,	Hours - 10				
Residue theorem, Calculation of residue	s, Residue at a pole of o	order m,	110015 - 10				
Evaluation of real definite integrals: Inte	gration around the unit	circle,					
Integration around semi circle.							
Course outcomes:							
On completion of this course, students a	re able to						
1. Interpret the physical meaning of di	fferent operators such as	gradient, curl and di	vergence(L5)				
2. Estimate the work done against a	a field, and verify integr	ral theorems (L5)					
3. apply Cauchy-Riemann equations to complex functions in order to determine whether a given							
continuous function is analytic (L3)							
4. tind the differentiation and integr	4. find the differentiation and integration of complex functions used in engineering problems(L3)						
5. make use of the Cauchy residue the	eorem to evaluate certai	n integrals (L3)					

Question paper pattern:

Question paper consists of 10 questions.

- 1. Each full question carrying 14 marks.
- 2. Each full question will have sub question covering all topics under a unit.
- 3. The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.
- 3. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 9th edition,
- 4. N.P.Bali and Manish Goyal, "A text book of Engineering mathematics", Laxmi publications, 7th Edition.
- 5. H.K. Dass and Er. RajnishVerma, "Higher Engineerig Mathematics", S.Chand publishing, 1st edition, 2011.

ELECTRICAL	L CIRCUIT ANALYS	IS		
Section 4 Conde	MESTER III	TA Manlar	20	<u> </u>
Subject Code	21EEEE15020 21	IA Marks	30	0
Total Number of Lecture Hours/ Week	3L 45	Exam Hours		2
Total Number of Lecture Hours	45 Credits 03	Exam nours	U.	3
COURSE OB JECTIVES.	Ci cuits-05			
This course will enable students :				
1 To understand the applications of ne	etwork theorems for ana	lysis of electrica	lnetworks	
2. To study the transient& steady state	behavior of electrical n	etworks	THEEWOIKS.	
3. To understand the behavior of RLC	networks for sinusoidal	excitations.		
4. To understand the application of La	place transforms for ana	lysis of electrica	l circuits.	
5. To understand the realization of electron	ctrical network function	into electrical ed	quivalent	
passive elements.			•	
Unit -1				
Network Theorems: Circuit Analysis with	th dependent and indep	bendent current		
and voltage sources. Node and Mesh	n Analysis. Superpos	ition theorem,		•
Thevenin's theorem, Norton theorem, M	Milliman theorem, Ma	ximum power	Hours-10	0
transfer theorem. Reciprocity theorem. Con	propensation theorem for	AC Excitation		
Unit -2	<u> </u>			
Solution of First and Second order ne	tworks: Solution of fi	rst and second		
order differential equations for Series and	d narallel R-I R-C R	- I-C circuits		
initial and final conditions in network along	a paramer R L, R C, R	nonso timo	Hours-1(0
initial and initial conditions in network eleme	ents, forceu anu free res	polise, time		
Constants, steady state and transferit state res	sponse.			
Unit – 5 Sinussidal staady state analysis, Dansa	contation of sing funct	ion of notating		
phasor phasor diagrams impedances ar	ad admittances AC of	ircuit analysis		
effective or RMS values average power	er and complex nowe	r Three-phase	Hours-08	2
circuits. Mutual coupled circuits. Dot Conve	ention in coupled circuit	ts.	110015-00	,
Unit – 4				
Electrical Circuit Analysis Using Lapla	ace Transforms: Revi	ew of Laplace		
Transform. Analysis of electrical circuits	using Laplace Transfor	m for standard		
inputs, convolution integral, inverse Laplac	e transform. transforme	d network with	II 05	-
initial conditions. Series and parallel resona	nces		Hours-0	7
Initial conditions. Somes and parametrics				
Two Port Network: Two Port Networks	terminal pairs relations	hip of two port		
variables, impedance parameters, admittance	ce parameters, transmiss	sion parameters	Hours-1(0
and hybrid parameters, interconnections of	two port networks.	····· F ·······		Ū
	1			
COURSE OUTCOMES:				
On completion of the course student will be	able to:			
1. Apply network theorems for the analysis	of electrical circuits.			
2. Analyze transient and steady state response	se of electrical circuits			
3. Solve single phase circuits and three- pha	se circuits			
4. Analyze electrical circuits using Laplace	Transforms			
5. Find parameters for different types of Tw	o Port Networks.			

TEXT BOOKS:

1.M. E. Van Valkenburg, "Network Analysis", Prentice Hall, Third edition 2006.

- 2.D.Roy Choudhury, "Networks and Systems", New Age International Publications, 1998.
- 3.W. H. Hayt and J. E. Kemmerly, "Engineering Circuit Analysis", McGraw Hill Education, 2013.

REFERENCE BOOKS:

- 1. C. K. Alexander and M. N. O. Sadiku, "Electric Circuits", McGraw Hill Education,
- 2. K. V. V. Murthy and M. S. Kamath, "Basic Circuit Analysis", Jaicoishers, 1999.
- 3. Electrical circuit analysis by A.Sudhakar and Shyam Mohan S palli.

4.Basic Engineering Circuit Analysis, by J. David Irwin, R. Mark Nelms, John Wiley & Sons

ANALOG	G ELECTRONICS MESTER III		
Course Code	21EEEET3030	IA Marks	30
Number of Lecture Hours/Week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits-03		
COURSE OBJECTIVES:			
This course will enable students:			
1. To Understand the characteristics	of Diode & Transistors		
2. To Understand the design of wave	shaping circuits		
3. To Understand the characteristics	of BJT and working as a	amplifier	
4. To Understand the analysis and ch	aracteristics of Operation	onal Amplifier	
5. To Understand the classification o	f Power Amplifiers		
Unit -1			
Introduction to Semi-conductor Switche PN- Junction diode, zener diode, BJT, FET diodes-single level and two-level clipping, Power Supplies: Single phase half wave, fu (LC and π), and Regulated power supply. Unit -2 Transistor Characteristics and Amplifiers components, transistor equation, transistor co characteristics of transistor in Common B Collector configurations, Bias stability and th low frequency response of an RC coupled high frequency response of two cascaded CE Unit - 3	s: Introduction, static of and MOSFETs, clippi clamping circuits usin all wave and bridge rect s: Junction transistor, tr onfigurations, transistor base, Common Emitter hermal runway, CE amp d amplifier, gain-band stages.	characteristics of ng circuits using ng diodes ifiers with filters ransistor current as an amplifier, and Common olifier response, width product,	Hours – 10 Hours –10
Feedback Amplifiers and Oscillators: A current series, current shunt, feedback an amplifiers, analysis of RC phase-shift, Wien and crystal oscillators. Unit – 4	nalysis of voltage serie nplifiers, stability of r bridge, LC oscillators (es, voltage shunt, negative feedback using BJT's only)	Hours –08
Differential, multi-stage and operational a	mplifiers		
Analysis of differential amplifier config problems, compensation techniques, direct structure of an operational amplifier, ideal (Output offset voltage, input bias current, in width product).	urations, CMRR, stab coupled multi-stage am op-amp, non-idealities put offset current, slew	ility and drift pplifier; internal s in an op-amp rate, gain band	Hours – 10

Unit – 5	
Power amplifiers: Classification of power amplifiers, analysis of class-A, class-B Hour	rs – 07
and class-AB operations, push-pull amplifiers and complementary symmetry,	
harmonic distortion, and cross-over distortion in power amplifiers.	
COURSE OUTCOMES:	
On completion of the course student will be:	
1. Ability to understand the characteristics of Diode & Transistors.	
2. Ability to design the wave shaping circuits using diodes.	
3. Ability to analyze feedback amplifier and Oscillator circuits.	
4. Ability to understand the non idealities of Op-amp.	
5. Ability to understand operation of power amplifiers.	
TEXT BOOKS:	
1. Electronic Devices and Circuits – J. Millman, C.C. Halkias, Tata Mc-Graw Hill	
2. Stanley: Operational Amplifiers with Linear Integrated Circuits, Edition 4, Pearson	
Education India, 2002.	
3. U. A. Bakshi, A. P. Godse: Linear integrated, Technical Publications, 2010.	
REFERENCE BOOKS :	
1. A Hand Book of Analog Electronics Circuit Design by Dennis L Feucht	
2. OP-AMPS & Linear integrated circuits by Ramakanth A Gayakwad (PHI)	
3. Linear integrated circuits by D Roy Chowdary, New age International	
4. OP-Amp's & Linear Integrated Circuit Concepts and Applications by Janet M.Fiore	·,
Cenagelearning	
5. Operational Amplifiers & Linear Integrated circuits by Robert F. Coughlin, Fre	aerick
F.Driscoll, Prenuce-Hall	

ELECTRICAL MEASUREMENTS & INSTRUMENTATION			
	SEMESTER III		
Subject Code	21EEEET5050	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits – 03		·
Course Objectives:			
This course will enable student:			
1. To study the principle of opera	ation and working of differ	ent types of	
instruments.			
2. To study the working principle	e & operation of different t	ypes of instrumen	ts
for measurement of power and	energy.		
3. To understand the working of	various types of bridges fo	r measurement of	R-L-C
parameters.	nainle & anamation of do a	nd as notantiamat	
4. To understand the working pri	nciple & operation of dc a	transducers	218.
5. To study the principle of opera	ers and study the Lissaiou	$\frac{1}{2}$	
Unit-1	ers and study the Elissajot		
Measuring Instruments			
Classification –Deflecting. control a	and damping torques –	Ammeters and	
Voltmeters PMMC and Moving iron	type instruments, dynamo	ometer type and	
electrostatic instruments – Expression	for the deflecting torque ar	nd control torque	Hours – 08
- Errors and compensations - Exte	nsion of range using sh	unts and series	
resistance – CT and PT: Ratio and phase angle errors.			
Unit – 2			
Measurement of Power and Energy:			
Single phase and Three Phase dynamic	nometer type wattmeter,	LPF and UPF,	
expression for deflecting and control t	orques – Extension of rar	ige of wattmeter	
using instrument transformers – Meas	urement of active and rea	active powers in	
balanced and unbalanced systems. Sin	ngle phase induction type	energy meter -	Hours – 10
driving and braking torques – errors	and compensations – test	ing by phantom	
loading. Three Phase Energy meter.	L		
Unit – 3			
Measurements of R. L & C Elements			
Method of measuring low, medium a	nd high resistance – sensi	tivity of Wheat-	
stone's bridge - Carey Foster's bridge,	Kelvin's double bridge for	r measuring low	Hours – 12
resistance, measurement of high	resistance – loss of	charge method.	
Measurement of inductance- Q-Fac	tor - Maxwell's bridge,	Hay's bridge,	
Anderson's bridge, Owen's bridge. M	easurement of capacitance	e and loss angle.	
Wien's bridge – Schering Bridge.			
Potentiometers			
Principle and operation of D.C. Crom	pton's potentiometer – S	tandardization –	
Measurement of unknown resistance -	- Current – Voltage – AC	Potentiometers:	
polar and coordinate types –Standardiz	ation – Applications.		

Unit – 4	
Digital Meters: Digital frequency meter – Digital Voltmeters – Successive approximation DVM - Ramp type DVM and Integrating type DVM – Digital frequency meter - Digital multi meter - Digital tachometer - Digital Energy Meter - Q meter - Power Analyzer. CRO- measurement of phase difference & Frequency using lissajious patterns - Numerical Problems.	Hours – 07
Unit – 5	
Transducers Introduction to transducers – Classification of transducers – Advantages of Electrical transducers – Characteristics and choice of transducers – Principle operation of resistor, inductor and capacitor transducers – LVDT and its applications – Strain gauge and its principle of operation – Guage factor – Thermistors – Thermocouples– Piezoelectric transducers – Photo diodes, Hall effect sensors.	Hours – 08
Course outcomes:	
 On completion of the course student will be able to: 1. Analyze PMMC and mi meters and instrument transformers. 2. Calculate load consumption using energy meters. 3. Determine unknown physical parameters such as R, L and C. 4. Explain the working of DC and AC potentiometers. 5. Apply the use of different digital meters. 6. Analyze the performance of various transducers. 	
Text Books:	
 Electrical Measurements and measuring Instruments – by E.W. Golding and F.C.Widdis, fifth Edition, Wheeler Publishing. Modern Electronic Instrumentation and Measurement Techniques – A.D. H W.D. Cooper, PHI, 5th Edition, 2002. Electrical and Electronic Measurements and instrumentation by R. K. Rajpu 	Ielfrick and t, S. Chand.
Reference Books:	
 Electrical & Electronic Measurement & Instruments by A.K. Sawhney, Dh Co. Publications. Electrical Measurements - by Puckingham and Price Prantice - Usiling 	anpat Rai &
2. Electrical Measurements by Equat K. Harris, John Wiley and Care	
 Electrical Measurements: Fundamentals, Concepts, Applications – by Reise M.U, New Age International (P) Limited, Publishers. 	sland,
5. Electrical and Electronic Measurements –by G. K. Banerjee, PHI Learning Ltd., New Delhi–2012.	Private

DC MACH (Syllabus fo	IINES & TRANSFORM	IERS	
(Synabus ic	SEMESTER III	22-23)	
Course Code	21EEEET3050	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits-03		
 Course Objectives: This course will enable student to : To understand the construction, p To learn the characteristics and p To understand the speed control if To predetermine the performance models. To Analyze the three phase transt Unit-1 Electromechanical Energy Conversity Principles of electromechanical energy excited systems- calculation of force at Construction and principle of operation generator –Excitation techniques- chapplications of DC Generators	principle of operation and performance of DC motor methods and testing meth e of single phase transform formers and achieve three on and introduction to D a conversion - singly exci nd torque using the conce n of DC machines – EMH aracteristics of DC shur	l performance of DC s nods of DC motors. mers with equivalent e phase to two phase DC machines: ted and multi ept of co-energy. F equation for at generator –	machines.
Unit – 2 Operation of DC motors Back-emf and torque equations of commutation – characteristics of sepa motors – losses and efficiency – applie – starting by 3 point and 4-point starter	f dc motors – Arman rately-excited, shunt, ser cations of dc motors. Ne rs.	ture reaction and ries and compound cessity of a starter	Hours-09
Unit – 3 Speed Control of motors and Testing Speed control by armature voltage ar brake test, Swinburne's method – princ – retardation test –field's test- separation	g of DC Machines ad field control – testing iple of regenerative or Ho on of losses.	of DC machines – opkinson's method	Hours-11
Unit – 4 1-Phase Transformers: Regulation – losses and efficiency – e voltage on losses – all day efficiency. circuit and short circuit tests – Sumpr operation with equal voltage ratios – comparison with two winding transform	ffect of variation of freq Tests on single phase transferred ther's test – separation of auto transformer – equations.	uency and supply insformers – open f losses – parallel iivalent circuit –	Hours-08

Unit – 5	
3-Phase Transformer: Polyphase connections- Y/Y, Y/ Δ , Δ /Y, Δ / Δ and open Δ - third harmonics in phase voltages – three winding transformers- transients in switching –off load and on load tap changers- Scott connection.	Hours-07
Course outcomes:	
 On completion of the course student will be able to: 1. Assimilate the concepts of electromechanical energy conversion. 2. Mitigate the ill-effects of armature reaction and improve commutation in dc m 3. Understand the torque production mechanism and control the speed of dc mot 4. Analyze the performance of single phase transformers. 	achines. ors.
5. Parallel transformers, control voltages with tap changing methods and achieve to two-phase transformation.	three-phase
 Text Books: 1. E. Fitzgerald and C. Kingsley,"Electric Machinery", New York, Me Education, 2013. 2. P.S.Bimbhra, "Electrical Machinery", Khanna Publishers, 2011. 	cGraw Hill
Reference Books:	
1. E. Clayton and N. N. Hancock, "Performance and design of DC machines", C Publishers, 2004.	CBS
 M. G. Say, "Performance and design of AC machines", CBS Publishers,2002 J. Nagrath and D. P. Kothari, "Electric Machines", McGraw HillEducation,20)10.

ANALOG	ELECTRONICS LAP	8	
Course Code	21EEEEL3060	I A Marks	15
Number of Practice Hours/Week	3P	Exam Marks	35
Total Number of Practice Hours	36	Exam Hours	03
	Credits-1.5		I
COURSEOBJECTIVES:			
This course will enable student to:			
1. To Understand the VI characterist	ics of Diode & working	of various Rectifier, cl	ipping
& Clamping circuits	of DIT & amplifiar aircu	ita	
2. To Understand VI characteristics (of MOSEET & Frequence	nis v Response of Commo	n source
amplifier circuit		y Response of Commo	ii source
4. To Understand the Linear Applica	tions of Operational Am	plifier	
5. To Understand the Non Linear Ap	plications of Operational	l Amplifier	
List of Experiments(Any twelve experiments)	ments must be conducted	ed)	
1. Plot the VI characteristics of using	g P-N junction Diode (b)) Zener Diode	
2. Plot the VI characteristics of Zene	r Diode		
3. To determine ripple factor and rec	tifier efficiency for a Hal	lf wave Rectifier	
4. To determine ripple factor and rec	tifier efficiency for a Ful	l Wave Rectifier	
5. Non Linear Wave Shaping – Clipp	bers		
6. Non Linear Wave Shaping – Clam	pers		
7. Plot the input and output character	ristics of BJT in Commo	n Emitter Configuratio	n
8. Transistor CE configuration			
9. RC- phase shift Oscillator			
10. Function generator using Op-amp	's.		
11. Op-amp IC 741 inverting and non-	inverting amplifiers		
12. Op AMP Applications – Adder, St	ubtractor, Comparator ci	rcuits.	
13. FET characteristics (CS configura	ation)		
14. FET –CS Amplifier			
COURSEOUTCOMES:			
On completion of the course student will	be able to:		
1. Ability to understand the characteris	stics of Diode & Applicat	ions of Diode (working	g of
rectifier, Clipping & Clamping circui	ts.		
2. Ability to Understand the characteri	stics of BJT & analyze th	he different amplifier of	circuits
3. Ability to Understand the characteria	stics of MOSFET & anal	yze the Frequency Res	sponse o
Λ Ability to analyze the Working of P	hase shift oscillators		
5. Ability to analyze the working of OF	PAMP based circuits like	Square Wave and Tri	angular
wave Generators		~ 1 and 11 are und 11	

ELECTRICA	AL CIRCUITS ANALYSI	IS LAB		
SEMESTER III				
Course Code	21EEEEL3070	1A-Marks	15	
Number of Practice Hours/Week	3P	Exam Marks	35	
Total Number of Practice Hours	36	Exam Hours	03	
	Credits-1.5			
COURSEOBJECTIVES:				
This course will enable student to:				
1. To verify and demonstrate var	ious theorems.			
2. To determine the transient ana	lysis of single phase circuit	S		
3. To verify and determine the pa	arameters of two port netwo	orks.		
4. To measure three phase active	and reactive power for pol	y phase circuits.		
5. To verify and determine node	voltages for electrical circu	it using Simulation too	1.	
List of Experiment	s(Any ten experiments mu	ist be conducted)		
1. Verification of Kirchhoff's law	/S.			
2. Verification of Thevenin's and	Norton's Theorems			
3. Verification of Superposition the	heorem and Maximum Pow	er Transfer Theorem		
4. Verification of Compensation	Theorem			
5. Verification of Reciprocity, Mi	llmann's Theorems			
6. Transient Analysis of Series R	L and RC circuit using PSP	ICE Software.		
7. Measurement of 3 phase Power	r by two Wattmeter Method	l for unbalanced loads		
8. Measurement of 3 phase reacti	ve power for star and delta	connected load		
9. Determination of Self, Mutual	Inductances and Coefficien	t of coupling		
10. Z and Y Parameters				
11. Transmission and hybrid paran	neters	1		
12. Verification of nodal analysis t	Ising MAILAB software I	001.		
COURSEOUTCOMES:				
On completion of the course student w	fill be able to:			
1. Apply various theorems to elec	trical circuit			
2. Analyze the transient response	ot single phase circuits			
3. Determine parameters for two	port networks.			
4. Measure active and reactive po	wer of Poly phase Circuits.			
5. Analyze nodal analysis using s	initiation software tool			

DC MACHINES & TRANSFORMERS LAB			
SEMESTER III			
Course Code	21EEEEL3080	IA Marks	15
Number of Lecture Hours/week	3P	Exam Marks	35
Total Number of Lecture Hours	36	Exam Hours	03
Credits-1.5			

Course Objectives:

This course will enable student to:

- 1. Gain knowledge on pre determination tests conducted on DC machines.
- 2. Gain knowledge on load tests conducted on DC machines.
- 3. Gain knowledge on various methods of controlling the speed of DC shunt motor.
- 4. Gain knowledge on pre determination tests conducted on single phase transformer.
- 5. Gain knowledge on operating two transformers in parallel and to achieve three phase to two phase transformation.

List of Experiments (Any ten experiments must be conducted)

- 1. Magnetization characteristics of DC shunt generator. Determination of critical field resistance and critical speed.
- 2. Brake test on DC shunt motor. Determination of performance curves.
- 3. Hopkinson's test on DC shunt machines. Predetermination of efficiency.
- 4. Swinburne's test and Predetermination of efficiencies as Generator and Motor.
- 5. Load test on DC compound generator. Determination of characteristics
- 6. Separation of losses in DC shunt motor
- 7. Load test on DC series generator. Determination of characteristics.
- 8. Brake test on DC compound motor. Determination of performance curves.
- 9. Load test on DC shunt generator. Determination of characteristics.
- 10. Sumpner's test on single phase transformer.
- 11. Scott connection of transformers
- 12. Parallel operation of Single phase Transformers
- 13. Separation of core losses of a single phase transformer

Course Outcomes:

On completion of the course student will be able to:

- 1. Pre determine the regulation, performance and efficiency on DC machines.
- 2. No load and Load test of the DC machine to obtain the characteristics, torque, output and efficiency.
- 3. Control the speed of DC shunt motor by using armature control and field control methods.
- 4. Pre determine the regulation and efficiency for a single phase transformer.
- 5. Operate two transformers in parallel and to achieve three phase to two phase transformation.

Electrical Wir (Skill Orio	ring & Installation ented Course)		
SEME	ESTER III		
Course Code	21EEEES3090	IA Marks	15
Number of Lecture Hours/Week	1L+2P	Exam Marks	35
Total Number of Lecture Hours	36	Exam Hours	03
Credits-02			

Course Objectives:

This course will enable student to:

- 1. Learn the Concept of basic Electricity, Single phase & three phase circuits.
- 2. Identify the cable sizes and perform cable jointing.
- 3. Perform House wiring
- 4. Identify the Ground Fault circuit interrupters.
- 5. Measure Earth resistance testing and maintenance.

Knowledge about installation of electrical appliance

- 1. Studies of diagram & Symbols used in basic Electrical Circuits
- 2. Single phase Industrial Electrical circuits.
- 3. Three phase Industrial Electrical circuits.
- 4. Measuring tools, wire gauges, Classification.
- 5. Identification of the electrical equipment cables, wires and electrical accessories.
- 6. Single phase domestic wiring.
- 7. Different types of wires & conductors, Load carrying capacity.
- 8. Different electrical wiring systems(Residential, Offices, Hospitals and Go-downs)
- 9. Earth resistance testing.
- 10. Maintenance of electrical appliances.

Course Outcomes:

On completion of the course student will be able to:

- 1. Demonstrate the Concept of basic Electricity, Single phase & three phase circuits.
- 2. Identify the cable sizes and perform cable jointing.
- 3. Perform House wiring
- 4. Demonstrate the operation Ground Fault circuit interrupters.
- 5. Estimate Earth resistance value and its maintenance

ELECTRO MAGNETIC FIELDS				
Course Code	SEMESTER III 21EEEEN2100	IA Montra		
Number of Lecture Hours/Week	21222200	IA Marks		
Total Number of Lecture Hours/ Week	<u> </u>	Exam Hours		03
Total Number of Lecture Hours		Exam nours		03
COURSEOD IECTIVES.	Creuits-0			
COURSEOBJECTIVES: This course will enable students to:				
1 Understand the basic laws of	electromagnetism			
2 Obtain the electric and magn	etic fields for simple configur	ations under staticco	nditio	ns
3 Analyze boundary condition	e neids for simple configur	ations under staticeo	nunno	115.
4 Understand Maxwell's equat	ion in different form sand dif	ferent media		
5 Analyze time varying electric	c and magnetic fields.	ferent media.		
Unit-1	e una magnetie nerabi			
Review of Vector Calculus Vector	algebra, addition, subtraction	. components of		
vectors, scalar and vector multiplication	ations, triple products, three of	orthogonal		
coordinate systems(rectangular, cyl	indricaland spherical). Vector	operator del,	Hou	rs-08
gradient, divergence and curl; integ	ral theorems of vectors. Conve	ersion of a vector		
from one coordinate system to anot	her.			
Unit-2				
Static Electric Field Coulomb's lav	v, Electric field intensity, Elec	ctrical field due to		
point charges. Line, Surface and Vo	lume charge distributions. Ga	uss law and its	Hou	rs-08
applications. Absolute Electric potential, Potential difference, Calculation of				
potential differences for different co	nfigurations. Electric dipole,	Electrostatic		
Energy and Energy density.				
Unit-3				
Conductors, Dielectrics and Capa	citance Current and current de	ensity, Ohms Law		
in Point form, Continuity of current,	Boundary conditions of perfe	ect dielectric		
materials. Permittivity of dielectric materials, Capacitance, Capacitance of at two			Hou	rs-08
wire line, Poisson's equation, Laplace's equation, Solution of Laplace and Poisson's				
equation, Application of Laplace's a	nd Poisson's equations			
Unit-4				
Static Magnetic Fields	anotic flux and magnetic flux	density Sector and		
Blot Savart Law, Allipere Law, Ma	gnetic fields produced l	density, Scalar and	Ham	
vector Magnetic potentials. Steady	area Earea an a differential	by current carrying	Hou	rs-vo
conductors. Force on a moving ch	arge, Force on a unrefermation	current		
Linit 5	current elements.			
Unit-5				
Magnetic Forces, Materials and Ir	iductance	lo an ati a la aven da mu		
Nature of magnetic materials, Magn	inductor and permeability, N	lagnetic boundary	TT	06
Time Verying Fields and Mayyell	inductances.	tia Waxaa	Hou	rs-06
Faraday' slaw for Electromagnetic	induction Displacement curr	ent Point form of		
Maxwell's equation Integral form of	f Maxwell's equations Motion	nal Electromotive		
forces. Boundary Conditions. Povnt	ing theorem.			

COURSE OUTCOMES:

At the end of the course, students will demonstrate the ability

- 1. To understand the basic laws of electromagnetism.
- 2. Toobtaintheelectricandmagneticfieldsforsimpleconfigurationsunderstaticconditions.
- 3. To analyze boundary conditions
- 4. To understand Maxwell's equation in different forms and different media.
- 5. To analyze time varying magnetic fields.

TEXT BOOKS:

1.M.N.O.Sadiku, "Elements of Electromagnetics" Oxford University Publication, 2014.

REFERENCE BOOKS:

- 1. A. Pramanik, "Electromagnetism Theory and applications", PHI LearningPvt. L td, New Delhi, 2009.
- 2. A.Pramanik, "ElectromagnetismProblemswithsolution", PrenticeHallIndia, 2012.
- 3. G.W.Carter, "Theelectromagnetic field inits engineering aspects", Longmans, 1954.
- 4. W.J.Duffin, "Electricity and Magnetism", McGrawHillPublication, 1980.
- 5. W.J.Duffin, "AdvancedElectricityandMagnetism", McGrawHill, 1968.

SEMESTER IVCourse Code21EEEET4010IA Marks30Number of Lecture Hours/Week31Exam Marks70Total Number of Lecture Hours45Exam Hours03Credits-03Course objectives: This course will enable students to: 1. Introduce the terminology of signals and systems 3. Introduce Fourier tools through the analogy between vectors and signals. 4. Analyze behavior of continuous and discrete time LTI systems 5. Introduce the concept of sampling and reconstruction of signals.Hours-07Unit-1Introduce the concept of sampling and reconstruction of signals.Classification of Signals and Systems. Basic operations on signals. Test signals impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables.Hours-07Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and difference equations.Hours-10Unit-3Fourier series and fourier transform: Fourier series and fourier transform: Fourier series and fourier transform: Calculation of Periodic signals, Wave form Symmetries, Calculation of Periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain <br< th=""><th colspan="4">SIGNALS & SYSTEMS</th></br<>	SIGNALS & SYSTEMS				
Course Code21EEEET4010IA Marks30Number of Lecture Hours/Week3LExam Marks70Total Number of Lecture Hours45Exam Hours03Course objectives: This course will enable students to: 1. Introduce Fourier tools through the analogy between vectors and signals. 4. Analyze behavior of continuous and discrete time LTI systems 3. Introduce Fourier tools through the analogy between vectors and signals. 4. Analyze discrete time signals and systems using Z transforms 5. Introduce the concept of sampling and reconstruction of signals.Hours-07Unit-1Introduction to Signals and Systems: Classification of Signals and Systems: Bain and sinusoid signals. Properties of signals. Test signals impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables.Hours-07Unit-2Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and difference equations.Hours-08Unit-3Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform for discrete time signals and systems, system functions, poles and zeros of syste	SEMESTER IV				
Number of Lecture Hours/Week3LExam Marks70Total Number of Lecture Hours45Exam Hours03Credits-03Course objectives:1. Introduce the terminology of signals and systems2. Analyze behavior of continuous and discrete time LTI systems3. Introduce the terminology of signals and systems using Z transforms5. Introduce the concept of sampling and reconstruction of signals.4. Analyze behavior of continuous and discrete time LTI systems3. Introduce the concept of sampling and reconstruction of signals.Unit-1Introduction to Signals and Systems.Classification of Signals and Systems.Basic operations on signals. Test signals impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables.Unit-2Eahavior of continuous and discrete time LTI systems:Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations.Unit-3Fourier series and fourier transform: Fourier series and fourier transform: Calculation of Fourier Coefficients. Fourier Transform, Convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform for continuous time signals and systems, system functions, poles and zero	Course Code	21EEEET4010	IA Marks	30	
Total Number of Lecture Hours 45 Exam Hours 03 Credits-03 Course objectives: This course will enable students to: 1. Introduce the terminology of signals and systems 3. 3. Introduce fourier tools through the analogy between vectors and signals. 4. Analyze behavior of continuous and discrete time LTI systems 3. Introduce the concept of sampling and reconstruction of signals. 4. Analyze discrete time signals and systems using Z transforms 5. Introduce the concept of sampling and reconstruction of signals. Introduction to Signals and Systems: 4. Classification of Signals and Systems. Respective of signals. Energy and power signal. Transformation of independent variables. Hours-07 Unit-2 Ehavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. Hours-10 Unit-3 Fourier series and fourier transform: Fourier Series and fourier transform: Convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Co	Number of Lecture Hours/Week	3L	Exam Mark	ks 70	
Credits-03 Course objectives: This course will enable students to: 1. Introduce the terminology of signals and systems 1. Introduce Fourier tools through the analogy between vectors and signals. 2. Analyze behavior of continuous and discrete time LTI systems 3. Introduce Fourier tools through the analogy between vectors and signals. 4. Analyze discrete time signals and systems using Z transforms 5. Introduce the concept of sampling and reconstruction of signals. Signals and Systems: Classification of Signals and Systems: Introduce the concept of sampling and reconstruction of signals. Energy and power signal. Transformation of independent variables. Unit-1 Mours-07 Hours-07 Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. Hours-10 Unit-3 Fourier Series and fouri	Total Number of Lecture Hours	45	Exam Hour	s 03	
Course objectives: This course will enable students to: 1. Introduce the terminology of signals and systems 2. Analyze behavior of continuous and discrete time LTI systems 3. Introduce Fourier tools through the analogy between vectors and signals. 4. Analyze discrete time signals and systems using Z transforms 5. Introduce the concept of sampling and reconstruction of signals. Unit-1 Introduction to Signals and Systems: Classification of Signals and Systems. Basic operations on signals. Test signals impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables. Hours-07 Unit-2 Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. Hours-10 Unit-3 Fourier series and fourier transform: Fourier series and fourier transform: Fourier series and fourier transform: Fourier series and fourier transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Unit-4 L		Credits-03			
This course will enable students to: 1. Introduce the terminology of signals and systems 2. Analyze behavior of continuous and discrete time LTI systems 3. Introduce Fourier tools through the analogy between vectors and signals. 4. Analyze discrete time signals and systems using Z transforms 5. Introduce the concept of sampling and reconstruction of signals. Unit-1 Introduction to Signals and Systems. Basic operations on signals. Test signals impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables. Unit-2 Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. Unit-3 Fourier series and fourier transform: Fourier series and fourier transform: Fourier series and fourier transform: Fourier series and fourier transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Unit-4 Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform for discrete time signals and systems, system functions, poles and zeros of system and system behavior, Inverse Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse Z	Course objectives:				
 Introduce the terminology of signals and systems Analyze behavior of continuous and discrete time LTI systems Introduce Fourier tools through the analogy between vectors and signals. Analyze discrete time signals and systems using Z transforms Introduce the concept of sampling and reconstruction of signals. Unit-1 Introduction to Signals and Systems: Classification of Signals and Systems. Basic operations on signals. Test signals impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables. Unit-2 Behavior of continuous and discrete time LTI systems: Impulse, response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. Unit-3 Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Unit-4 Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and system behavior, Inverse Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequ	This course will enable students to:				
 2. Analyze behavior of continuous and discrete time LTI systems 3. Introduce Fourier tools through the analogy between vectors and signals. 4. Analyze discrete time signals and systems using Z transforms 5. Introduce the concept of sampling and reconstruction of signals. Unit-1 Introduction to Signals and Systems: Classification of Signals and Systems. Basic operations on signals. Test signals impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables. Unit-2 Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. Unit-3 Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution / multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Unit-4 Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse Z 	1. Introduce the terminology of signal	s and systems			
 Introduce Fourier tools through the analogy between vectors and signals. Analyze discrete time signals and systems using Z transforms Introduce the concept of sampling and reconstruction of signals. Unit-1 Introduction to Signals and Systems: Classification of Signals and Systems. Basic operations on signals. Test signals impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables. Unit-2 Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. Unit-3 Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Unit-4 Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse Z 	2. Analyze behavior of continuous an	d discrete time LTI systems			
 Analyze discrete time signals and systems using Z transforms Introduce the concept of sampling and reconstruction of signals. Unit-1 Introduction to Signals and Systems: Classification of Signals and Systems. Basic operations on signals. Test signals impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables. Unit-2 Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. Unit-3 Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Unit-4 Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse Z 	3. Introduce Fourier tools through the	analogy between vectors and	signals.		
 5. Introduce the concept of sampling and reconstruction of signals. Unit-1 Introduction to Signals and Systems: Classification of Signals and Systems. Basic operations on signals. Test signals impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables. Unit-2 Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. Unit-3 Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Unit-4 Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse Z 	4. Analyze discrete time signals and s	ystems using Z transforms			
Unit-1Hours-07Introduction to Signals and Systems: Classification of Signals and Systems. Basic operations on signals. Test signals impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables.Hours-07Unit-2Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations.Hours-10Unit-3Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	5. Introduce the concept of sampling a	and reconstruction of signals.			
Introduction to Signals and Systems: Classification of Signals and Systems. Basic operations on signals. Test signals impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables.Hours-07Unit-2Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations.Hours-10Unit-3Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	Unit–1				
Classification of Signals and Systems. Basic operations on signals. Test signals impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables.Hours-07Unit-2Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and difference equations.Hours-10Unit-3Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier TransformHours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	Introduction to Signals and Systems:				
impulse, step, ramp and sinusoid signals. Properties of signals. Energy and power signal. Transformation of independent variables.Unit-2Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations.Hours-10Unit-3Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	Classification of Signals and Systems. E	Basic operations on signals.	Fest signals	Hours-07	
signal. Transformation of independent variables.Unit-2Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations.Hours-10Unit-3Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	impulse, step, ramp and sinusoid signals.	Properties of signals. Energy	and power		
Unit-2Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations.Hours-10Unit-3Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	signal. Transformation of independent var	iables.			
Behavior of continuous and discrete time LTI systems: Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations.Hours-10Unit-3Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	Unit–2				
Impulse response and step response, convolution, input output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations.Hours-10Unit-3Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	Behavior of continuous and discrete tim	e LTI systems:			
periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations.Hours-10Unit-3Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	Impulse response and step response, c	onvolution, input output bel	navior with		
and stability of LTI systems. System representation through differential equations and difference equations.Hours-10Unit-3Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	periodic convergent inputs, cascade interc	connections. Characterization	of causality		
and difference equations.Unit-3Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	and stability of LTI systems. System repr	resentation through differentia	al equations	Hours-10	
Unit-3Fourier series and fourier transform: Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	and difference equations.				
Fourier series and fourier transform:Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	Unit-3				
Fourier series representation of periodic signals, Wave form Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	Fourier series and fourier transform:				
Calculation of Fourier Coefficients. Fourier Transform, convolution /multiplication and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Hours-08Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	Fourier series representation of perio	dic signals, Wave form S	ymmetries,		
and their effect in the frequency domain, magnitude and phase response. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.Unit-4Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse ZHours-10	Calculation of Fourier Coefficients. Fouri	er Transform, convolution /mi	altiplication	Hours-08	
Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Unit-4 Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse Z	Discrete Time Fourier Transform (DTE	T) and the Discrete Fourier	Transform		
Unit-4 Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse Z	(DET) Persoval's Theorem	1) and the Discrete Fourier	Tansionn		
Unit-4 Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse Z Transform for discrete time signals and systems, system					
Laplace and Z Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse Z	Unit-4				
Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse Z	Laplace and Z Transforms:				
tunctions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior, Inverse Laplace Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse Z	Review of the Laplace Transform for con	tinuous time signals and syste	ems, system		
Transform. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis, Inverse Z	tunctions, poles and zeros of system f	functions and signals, Lapla	ce domain	Hours-10	
functions, poles and zeros of systems and sequences, z-domain analysis, Inverse Z	analysis, solution to differential equation	is and system behavior, Inver	rse Laplace	110013-10	
runctions, poles and zeros of systems and sequences, z-domain analysis, inverse Z	Iransform. The z-Transform for discr	ete time signals and system	ns, system		
L rongtorm	Transform	sequences, z-domain analysis	s, Inverse Z		

Unit–5
Sampling and Reconstruction:
The Sampling Theorem and its implications. Spectra of sampled signals.
Reconstruction: ideal inter polar, zero order hold, first order hold. Aliasing and its Hours-08
effects. Relation between continuous and discrete time systems.
Course outcomes:
On completion of the course student will be able to:
1. Distinguish the signals and systems and System properties
2. Analyze behavior of continuous and discrete time LTI systems
3. Analyze the continuous time signals and continuous time systems using Fourierseries and
Fourier transform
4. Analyze discrete time signals and systems using Z transforms
5. Introduce the concept of sampling and reconstruction of signals.
Textbooks:
1. A.V.Oppenheim, A.S.Willskyand S.H.Nawab, "Signals and systems", Prentice Hall India,
1997.
2. J.G.Proakis and D.G.Manolakis, "Digital Signal Processing: Principles, Algorithms, and
Applications", Pearson, 2006.
3. H.P.Hsu, "Signals and systems", Schaum's series, McGraw Hill Education, 2010.
Reference books:
1. Signals & Systems Simon Haykin and VanVeen, Wiley, 2 nd Edition.
2. Principles of Linear Systems and Signals–BP Lathi, Oxford University Press, 2015
3. Signals and Systems–K Raja Rajeswari,
4. BVisweswara Rao, PHI,2009 Fundamentals of Signals and Systems Michel J.Robert, MGH
International Edition, 2008.
Web references:
1. <u>https://nptel.ac.in/courses/117104074/8</u>
2 https://nptel.ac.in/courses/117101055/

 http://14.139.172.204/nptel/CSE/Web/117104074/Signals%20and%20Systems.pdf http://www.satishkashyap.com/2012/04/iit-video-lectures-on-signals-and.html

DIGITAL ELECTRONICS				
SEME	21FFFFT/020	IA Me	rke	30
Number of Lecture Hours/Week	<u>21EEEE14020</u> <u>3L</u>	Exam	Marks	70
Total Number of Lecture Hours	45	Exam	Hours	03
(Credits-03			1
COURSE-OBJECTIVES:				
This course will enable student to:	·1· 1 · ·			
1. To understand the working of Logic far	nilies and Logic gates			
2. To understand the working of Sequentia	al Logic Circuits			
4. To understand the use of PLD to impler	ment the given logic.			
5. To understand working of Semiconduct	tor memories			
Unit-1				
Review of Number Systems & Codes:				
Representation of numbers of different radix	, conversation from one r	adix to		
another radix, r-1's compliments and r's c	ompliments of signed nu	umbers,		10
problem solving. 4 bit codes, BCD, Exce	ess-3, 2421, 84-2-1 9s	& 10s	Hour	s-10
Basic logic operations -NOT OR AND Un	iversal building blocks	EX-OR		
EX-NOR - Gates, Standard SOP and POS, Fo	orms. Grav code. error de	tection.		
error correction codes (parity checking, eve	en parity, odd parity, Ha	mming		
code) NAND-NAND and NOR-NOR realization	ons.			
Unit-2				
Combinational Digital Circuits: Standard re K-map representation, and simplification of minimization of logical functions. Don't	epresentation for logic functions using care conditions, Mult	nctions, K-map, iplexer,		
DeMultiplexer/Decoders, Adders, Subtractor ahead adder, serial adder, digital comparator	rs, BCD arithmetic, carr r, parity checker/generato	y look r, code	Hours	5-08
converters, priority encoders, decoders/drivers of function realization.	for display devices, Q-M	method		
Unit-3				
Sequential circuits and systems: A1bit mem	nory, the circuit properties	s of Bi-		
stable latch, the clocked SR flip flop, JK, T a	nd D type flip flops, appli	cations		
of flip-flops, shift registers, applications of	shift registers, serial to	parallel	Hours	s-07
(Asynchronous) counters synchronous coun	ters, counters design usi	ng flin		
flops, special counter IC's, synchronous seq	uential counters, applicat	ions of		
counters.	/ 11			
Unit–4				
A/D and D/A Converters:				
Digitaltoanalogconverters:weightedresistor/cor	nverter,R2RLadderD/Acon	verter,		
specifications for D/A converters, examples o	of D/A converter ICs, sam	ple and		
hold circuit, analog to digital converters: qua	antization and encoding, $\frac{1}{2}$	parallel	TT	10
Comparator A/D converter, successive approx A/D converter dual slope Δ/D converter Δ/Γ	nnauon A/D converter, co	to	nours-	10
frequency and voltage to time conversion.	pecifications of A/D con	verters.		
example of A/D converter ICs				

Unit-5		
Semi-conductor memories and Programmable logic devices: Memory organization and operation, expanding , classification and characteristics of memories, sequential memory, read only memory (ROM), read and write memory(RAM),content addressable memory(CAM)RAM, ROM (Cell Structures and Organization on Chip),ROM as a PLD, Programmable logic array, Programmable array logic.	Hours-10	
COURSE OUTCOMES:		
On completion of the course student will be:		
1. Understand working of logic families and logic gates.		
2. Design and implement Combinational logic circuits.		
3. Design and implement Sequential logic circuits.		
4. Understand the process of Analog to Digital conversion and		
Digital to Analog conversion.		
5. Be able to use PLDs to implement the given logical problem.		
TEXT BOOKS:		
 R.P.Jain, "Modern Digital Electronics", McGrawHillEducation,4th edition M.M.Mano, "Digital logic and Computer design", Pearson Education India A.Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016. REFERENCE BOOKS :	n a, 2016.	
1. Fundamentals of Logic Design by Charles H Roth Jr, Jaico Publisher		
2. Switching Theory and Logic Design by Hill and Peterson McGrawHill MH	I Edition	
3. Switching Theory and Logic Design by M V Subramanyam		

MATHEMATIC	S-IV (Probability and SEMESTER IV	l Statistics)	
Subject Code	21CMMAT4030	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
	Credits – 03		02
Course Objectives: 1. To apply least squares method to 2. To know the Basic Concepts of I 3. To apply Continuous probability 4. To obtain the estimate of a param 5. To test the hypothesis. Unit -1	o fit a curve. Probability and corresp distributions neter from sample stati	onding Discrete dist	ributions
Curve fitting: Method of least squares -	– fitting to Straight line	e – parabola –	Hours – 08
Exponential and Power curves.	inting to branght line	puluoolu	
Unit -2			
Discrete random Variables and Distri	ibutions: Introduction	Random variables	
-Discrete random variables-Distribution Discrete distributions: Binomial and P data	on function-Mathemat oisson distributions an	tical Expectation. and their fitting to	Hours – 10
Unit – 3			
Continuous random Variables and Di random variables-Distribution function- Uniform and Normal distributions, Norr distribution.	stributions: Introducti Expectation. Continuo nal approximation to B	on - Continuous ous distributions: inomial	Hours – 10
Unit – 4			
Sampling theory Introduction-Population and samples-Sa Variance (definition only)-Central limit	mpling distribution of theorem (without proo	means and f).	Hours – 10
Unit – 5		1	
Test of Hypothesis: Introduction-Hypothesis-Null and Alternerrors-Level of Significance-One tail an mean and two means(Large and Small s Goodness of fit - Tests on proportions :	native Hypothesis-Type d two tail tests-Tests co amples) - z test, t-distri z-test and t-test	e I and Type II oncerning one bution, Test of	Hours – 10
Course outcomes:			
 On completion of this course, students a 1. Apply least squares method to fi 2. Apply the Concepts of Probabil Continuous distributions (L3) 3. Apply Continuous probability D 4. Estimate the properties of popula 5. Design the Components of class methods based on small and larg 	re able to t a curve (L5) lity and Find the statis istributions (L3) ation from samples. (L4 sical Hypothesis test, C e samples. (L6)	stical Parameters of 5) Conclude the statisti	Discrete and
Question paper pattern:			
1. Question paper consists of 10 qu	estions.		
2. Each full question carrying 14 m	arks.		
3. Each full question will have sub	question covering all to	opics under a unit.	с т
4. The student will have to answer	r 5 full questions selec	ting one full questi	on from each

unit.

Text Books:

- 1. Miller and Freund's, Probability and Statistics for Engineers, 7/e, Pearson, 2008.
- 2. S.C.Gupta and V.K.Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand & Sons Publications, 2012.
- 3. B.V.Ramana "Higher Engineering Mathematics" Tata Mc Graw-Hill, 2006.

Reference Books:

- 1. Shron L.Myers, Keying Ye, Ronald E Walpole, Probability and Statistics for Engineers and the Scientists,8th edition, Pearson 2007.
- 2. Jay L Devore, Probability and Statistics for Engineering and the Sciences, 8thEdition, Cengage.
- 3. Sheldon M.Ross, Introduction to probability and statistics Engineers and Scientists,4thEdition, Academic Foundation, 2011.
- **4.** Johannes Ledolter and Robert V.Hogg, Applied Staistics for Engineers and Physical Scientists, 3rd Edition, Pearson, 2010.
- 5. Srimanta Pal and Subodh C. Bhunia, Engineering Mathematics, Oxford University Press.

INDUCTION &	X SYNCHRONOUS MA SEMESTER IV	ACHINES	
Course Code	21EEEET4040	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits -3		
Course Objectives:			
Enable the students			
1. Understand the Physical arranger	ment of windings.		
2. Quantify the performance of indu	uction motor and induction	on generator in terms	of torque
and slip.		e	1
3. To understand the torque product	ing mechanism of a three	phase induction mo	tor.
4. To understand the torque product	ing mechanism of a singl	e phase induction	
motor.	0	1	
5. To understand the operation, per	formance and starting me	thods of synchronou	s machines.
Unit 1		•	
Fundamentals of AC machine windi	ngs		
Physical arrangement of windings	in stator and cylindrica	al rotor: slots for	
windings: single turn coil active	portion and overhang:	full pitch coils	
concentrated winding distributed win	ding Sinusoidally distri	buted winding	Hours-07
winding factors	ang. Sinasolaany aisti	outed winding,	
Unit 2			
3-Phase Induction Motors			
Construction details of squirrel cage a	nd slip ring induction m	otors – production	
of rotating magnetic field – principle	of operation – Equival	ent circuit –phasor	Hours-06
diagram- slip speed-rotor emf and roto	or frequency $-$ rotor curr	ent and pf at	
standstill and during running condition	s = rotor power input ro	tor copper loss and	
mechanical power developed and their	interrelationship.	tor copper ross una	
Unit 3	p		
Testing and Starting methods of 3-pl	hase induction motors		
Torque equation – expressions for ma	ximum torque and starti	ng torque – torque	
slip characteristic – double cage and	deep bar rotors – crawl	ing and cogging –	Hours-09
speed control of induction motor with	V/f control method No	load and blocked	
rotor tests			
circle diagram for predetermination	of performance – ir	duction generator	
operationDOL, Auto transformer, Star-	-Delta and rotor resistanc	e methods.	
Unit 4			•
Single phase induction motors:			Hours-13
Constructional features, double reve	olving field theory, e	quivalent circuit.	
Methods of starting. AC series motors.	6 · · · · · · · · · · · · · · · · · · ·	1	
Synchronous Machines:			
Constructional features of non-salient a	and salient pole machines	s – phasor diagrams	
voltage regulation by synchronous imp	edance method –MMF	method and Potier	
triangle method– two reaction analysis	of salient pole machines	and phasor diagram	
Parallel operation with infinite bus and	l other alternators – svncl	hronizing power –	
load sharing – control of real and read	ctive power-numerical pr	roblems.	

Unit 5		
Synchronous motor – operation, starting and performance		
Synchronous motor principle and theory of operation – phasor diagram – starting		
torque - variation of current and power factor with excitation - capability curves -		
synchronous condenser – mathematical analysis for power developed – hunting		
and its suppression – methods of starting – applications.		
Course outcomes:		
On completion of the course student will be able to:		
1. Illustrate the structure of AC machines and identify the various types of wind	ings.	
2. Explain the operation and performance of three phase induction motor.		
3. Analyze the torque-speed relation, performance of induction motor.		
4. Implement the starting of single phase induction motors and Analyze the operation of		
synchronous machines.		
5. Explain hunting phenomenon, implement methods of staring and correction of power		
factor with synchronous motor.		
Text Books:		
1. E. Fitzgerald and C. Kingsley, "Electric Machinery", McGraw HillEducation, 20	013.	
2. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.		
3. P.S.Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.		
Reference Books:		
1. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw HillEducation, 20	10.	
2. S. Langsdorf, "Alternating current machines", McGraw HillEducation, 1984.		
3. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wil- 2007.	ey & Sons,	

ENGINEERING ECONOMICS AND FINANCIAL MANAGEMENT SEMESTER IV				
Subject Code	21CMMST4050	Internal Marks	30	
Number of Lecture	210111011030		50	
Hours/Week	03	External Marks	70	
Total Number of Lecture Hours	50	Exam Hours	03	
Credits-03				
Course objectives:				
1. To understand the conce	ept and nature of Managerial l	Economics and Conce	ept of Demand and	
Demand forecasting.				
2. To understand the conce	ept of Production function, Inj	out Output relationship	p, Cost Concepts	
and Concept of Cost-Vo	olume-Profit Analysis.		1 1 1 00	
3. To understand the Mark	tet structures, significance of	various pricing method	is and different	
Iorms of Business organ	ization and the concepts of B	usiness Cycles.	totomonto and usoo	
4. 10 understand the different tools for per	formance evaluation	aration of Financial S	tatements and uses	
5 To understand the conce	ent of Capital Capitalization	Capital Budgeting and	to know the	
techniques used to evalu	ate Capital Budgeting propos	als by using different	methods	
Unit -I: Introduction to M	anagerial Economics and	demand Analysis		
Definition of Managerial I	Economics and Scope-Mar	nagerial Economics		
and its relation with o	ther subjects-Concepts	of Demand-Types-		
Determents-I aw of Demai	ad its Exception-Flasticity	of Demand-Types	10 Hours	
and Measurement- Demand	forecasting and its Method	s beinand Types		
Unit -II: Production and C	ost Analysis			
Production function- Law c	of Variable proportions- Isc	ocuants and Isocost-		
Cobb-Douglas Production	function-Economics of Sc	ale-Cost Concepts-	10.77	
Cost Volume Profit analysi	s- Determination of Break-	Even Point (Simple	10 Hours	
Problems).		I I I		
Unit-III: Introduction To Ma	urkets, Pricing Policies & forms	organizations and B	usiness Cycles	
Market Structures: Perfect (Competition, Monopoly and	Monopolistic and		
Oligopoly – Features – Price	e,Output Determination – N	Aethods of Pricing:		
Strategies of Pricing & proc	ess for selecting final price	Features and	10 11	
Evaluation of Sole Trader –	Partnership – Joint Stock (Company –	10 Hours	
State/Public Enterprises and	l their forms – Business Cy	cles – Phases of		
Business Cycle				
Unit –IV: Introduction to A	Accounting & Financing A	nalysis	1	
Introduction to Double E	Entry Systems – Journal	entry-Ledger-Trail		
Balance-Final Accounts-Pr	reparation of Financial St	atements- Analysis	10 Hours	
and Interpretation of Financ	ial Statements-Ratio Analy	sis.		
Unit-V: Capital and Capital Budgeting				
Capital Budgeting: Mean	ning of Capital-Capitaliz	ation-Meaning of		
Capital Budgeting-Need for	or Capital Budgeting-Tech	iniques of Capital	10 Hours	
Budgeting-Traditional and I	Modern Methods.	1 1		

Course outcomes:

- 1. Students are equipped with the knowledge of managerial economics and estimating demand for a product.
- 2. Students understand Production and Cost concepts, estimating Cost Break even Analysis.
- 3. Students are equipped with the knowledge on Markets and Pricing methods along with Business Cycles.
- 4. Students are able to understand Accounting Concepts and Prepare Financial Statements-Analysis
- 5. Students are able to analyse various investment project proposals with the help of Capital Budgeting techniques.

Question paper pattern:

Section A:

- 1. This section contains ten one or two line answer question carrying 1 mark each.
- 2. Two questions from each unit should present.

Section B:

- 4. This Section will have 10 questions.
- 5. Each full question carry 12 marks.
- 6. Each full question will have sub question covering all topics under a unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. Dr. A. R. Aryasri Managerial Economics and Financial Analysis, TMH 2011.
- 2. B. Kuberadu Managerial Economics and Financial Analysis, 1/e, HPH, 2013
- 3. Dr. P. Vijaya Kumar & Dr. N. Apparao Management Science Cengage, Delhi, 2012.

Reference Books:

- 1. Ambrish Gupta, Financial Accounting for Management, Pearson Education, New Delhi.
- 2. H. Craig Peterson & W. Cris Lewis, Managerial Economics, PHI, 4th Ed.
- 3. Koontz and weihrich: Essentials of management, TMH 2011
- 4. Seth& Rastogi: Global management systems, cengage learning, delhi, 2011
- 5. V. Maheswari: Managerial Economics, Sultan Chand.
- 6. Dr. B. Kuberudu and Dr. T. V. Ramana: Managerial Economics & Financial Analysis, Himalaya Publishing House 2011.
- 7. Vanitha Agarwal : Managerial Economics, Pearson Publications 2011.
- 8. Sanjay Dhameja: Financial Accounting for Managers, Pearson.
- 9. Maheswari : Financial Accounting, Vikas Publications.
- 10. S. A. Siddiqui & A. S. Siddiqui: Managerial Economics and Financial Analysis, New Age International Publishers, 2012.

		MESTER IV				
Course	SEIVIESTER IV					
Numbe	er of Practice Hours/Week	3P	Exam Marks	35		
Total N	Number of Practice Hours	36	Exam Hours	03		
100011		Credits-1.5		00		
COUR	SEOBJECTIVES:					
This cc	ourse will enable students:					
1.	To understand De-Morgan's Theo	orem SOP. POS Forms.				
2.	To understand Full/Parallel Adder	s. Sub tractors and Mag	nitude Comparators.			
	Multiplexer using gates,	.,	I ,			
3.	To understand De-Multiplexers ar	nd Decoders. Flip Flops	. Shift Registers and	Counters		
4.	To understand A-D and D-A Conv	verters.	,			
5.	To understand the Semi-Conducto	or Memories				
	List of Experiments (A)	ny twelve experiments	must be conducted)			
1.	Design and implementation of Ad	ders and Sub tractors us	sing logic gates.			
2.	Design and implementation of cod	le converters using logic	c gates (i) BCD to			
	excess3code and vice versa (ii) Bi	inary to gray and vice v	ersa			
3.	Design and implementation of 4bi	it binary Adder/subtract	or and BCD adder			
	using IC7483					
4. Design and implementation of 2Bit Magnitude Comparator using logic gates 4 bit						
Magnitude Comparator using IC7485						
5.	Design and implementation of 8bi	it odd/even parity check	ter generator using IC	74180.		
6.	6. Design and implementation of Multiplexer and De-multiplexer using logic gates					
7.	7. Design and implementation of encoder and decoder using logic gates and study of					
	IC7445 and IC74147	C				
8.	Construction and verification of 4	bit ripple counter and N	Mod10/Mod12 Ripple	e counters		
9.	Design and implementation of 3bi	it synchronous up/down	counter			
10.	Implementation of SISO, SIPO, PI	SO and PIPO shift regis	sters using flip-flops.			
11.	To design and build DAC using C)p-Amp.	0 1 1			
12.	To design and build ADC using C)p-Amp				
13.	Realize the Ring Counter and Joh	nson Counter using IC7	476			
COUI	RSEOUTCOMES:					
On co	mpletion of the course student wil	l be:				
1.	Demonstrate the truth table of vari	ious Expressions and Co	ombinational Circuits	using		
	logic gates.	*		U		
2.	Design, test and evaluate various (Combinational Circuits	such as Adders, Subtr	actors,		
	Comparators, Multiplexers and D	e-multiplexers.				
3.	Construct Flip flops, Counters and	d Shift Registers.				
4.	Construct A-D & D-A Converters	using Op-Amp.				
_	Construct different types of Mary					

ELECTRICAL MEASUREMENTS & INSTRUMENTATION LAB SEMESTER-IV Course Code 21EEEEL4070 **1A-Marks** 15 Number of Practice Hours/Week 3P Exam Marks 35 **Total Number of Practice Hours** 36 Exam Hours 03 Credits-1.5 **COURSE-OBJECTIVES:** 1. To analyze various-measuring instruments. 2. To determine R-L-C by using suitable bridge. 3. To analyze performance of CT and PT. 4. To determine non electrical parameters. 5. To measure displacement using LVDT. List-of-Experiments-(Any-ten-experiments-must-be-conducted) 1. Calibration and Testing of single phase energy Meter 2. Calibration LPF wattmeter by using Phantom loading 3. Calibration of dynamometer wattmeter using phantom loading 4. Crompton D.C. Potentiometer- Calibration of PMMC voltmeter and Ammeter 5. Kelvin's double Bridge- Measurement of resistance- Determination of Tolerance. 6. Capacitance Measurement using Schering Bridge. 7. Inductance Measurement using Anderson bridge 8. C.T. testing using mutual Inductor – Measurement of %ratio error and phase angle of given C.T.by Null method 9. Measurement of displacement using LVDT 10. Measurement of weight using strain gauge based transducer. 11. Measurement of temperature by RTD. 12. Measurement of temperature by thermocouple **COURSE-OUTCOMES:** 1. To be able to apply various-Measuring instruments. 2. To be able to analyze the Performance of Measuring instruments. 3. To be able to apply suitable bridge to determine unknown quantity. 4. To be able to determine-Physical Parameters. 5. To be able analyze the performance of C.

	INDUCTION & S	YNCHKUNOUS MAC. SEMESTED_IV	HINES LAB	
Cours	e Code	21EEEEL4080	IA Marks	15
Numb	er of Lecture Hours/week	3P	Exam Marks	35
Total]	Number of Lecture Hours	36	Exam Hours	03
		Credits 1.5		I
Cours	e Objectives:			
This c	ourse will enable student to :			
1.	Obtain efficiency by conducting	direct and indirect tests	on three phase inductio	n motor.
2.	Obtain regulation of alternator b	y E.M.F, M.M.F, Z.P.F	methods and also perfor	rmance
	curves.			
3.	Obtain V and Inverter V Curves	of a three phase synchro	onous motor.	
4.	Control the speed of the three ph	nase induction motor and	l to obtain equivalent ci	rcuit.
5.	Improve the power factor of sing	gle phase induction moto	or and to obtain its perfo	ormance.
	List of Experiments (A	Any ten experiments mu	st be conducted)	
1.	Brake test on three phase Induction	on Motor		
2.	No-load & Blocked rotor tests or	three phase Induction n	notor	
3.	Regulation of a three – phase alter	rnator by synchronous in	pedance & m.m.f. Met	hods
4.	Regulation of three–phase alterna	ator by Potier triangle me	ethod	
5 .	V and Inverted V curves of a three Determination of V land V of a	e phase synchronous mo	otor.	
6. J	Determination of Ad and Adol a	salient pole synchronous	machine	
/.	Equivalent circuit of single phase	111111111111111111111111111111111111		
ð. 1 0	Speed control of induction motor	' by V/I method.	ading with three phase	
j. j	luction motor	tee phase alternator by to	adding with three phase	
10	Power factor improvement of sin	gle phase induction moto	or by using canacitors a	heol he
tes	ton single phase induction motor		n by using capacitors a	Id Iodd
11	Measurement of sequence imped	• ance of a three_phase alt	ernator	
12.	Break test on split phase inductio	n motor.	cinutor.	
Cours	e outcomes:			
On cor	npletion of the course student wi	ll be able to:		
1.	Obtain efficiency by conducting	direct and indirect tests	on three phase inductio	n motor.
2.	Obtain regulation of alternator b	y E.M.F, M.M.F, Z.P.F	methods and also perfor	rmance
	curves.	- · ·	1	
3.	Obtain the V and Inverter V Cur	rves of a three phase syn	chronous motor.	

- Control the speed of the three phase induction motor and to obtain equivalent circuit.
 Improve the power factor of single phase induction motor and to obtain its performance.

DESIGN OF ELECTRICAL CIRCUITS USING ENGINEERING SOFTWARE TOOLS (Skill Oriented Course)

SEMESTER IV

Course Code	21EEEES4090	IA Marks		
Number of Lecture Hours/week	2P	Exam Marks		
Total Number of Lecture Hours	36	Exam Hours	03	
Credits 2				

Course Objectives:

This course will enable student :

- 1. To Learn the fundamentals of MATLAB Tools
- 2. To generate various waveform signals and sequences
- 3. To verify and simulate various electrical circuits using Mesh and Nodal Analysis
- 4. To verify and simulate various theorems
- 5. To verify and simulate RLC series and parallel resonance.
- 6. To determine self and mutual inductance of a magnetic circuit, parameters of a given coil.

List of Experiments (Any 10 of the following experiments are to be conducted)

Note: MATLAB/SIMULINK fundamentals shall be explained during the first week before starting of the course

- 1. Generation of various signals and sequences (Periodic and Aperiodic), such as unit
- 2. Impulse, Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp.
- 3. Operations on signals and sequences such as Addition, Multiplication, Scaling, Shifting,
- 4. Folding, Computation of Energy, and Average Power
- 5. Verification of Kirchhoff's current law and voltage law using simulation tools.
- 6. Verification of mesh analysis using simulation tools.
- 7. Verification of nodal analysis using simulation tools.
- 8. Determination of average value, rms value, form factor, peak factor of sinusoidal
- 9. wave, square wave using simulation tools.
- 7. Verification of super position theorem using simulation tools.
- 8. Verification of reciprocity theorem using simulation tools.
- 9. Verification of maximum power transfer theorem using simulation tools.
- 10. Verification of Thevenin's theorem using simulation tools.
- 11. Verification of Norton's theorem using simulation tools.
- 12. Verification of compensation theorem using simulation tools.
- 13. Verification of Milliman's theorem using simulation tools.
- 14. Verification of series resonance using simulation tools.
- 15. Verification of parallel resonance using simulation tools.

16. Verification of self-inductance and mutual inductance by using simulation tools.

COURSE OUTCOMES:

On completion of the course student will be able to:

- 1. write the MATLAB programs to simulate the electrical circuit problems
- 2. simulate various circuits for electrical parameters
- 3. simulate various wave form for determination of wave form parameters
- 4. simulate RLC series and parallel resonance circuits for resonant parameters
- 5. simulate magnetic circuits for determination of self and mutual inductances

ELECTRICAL WIRING, ESTIMATION & COSTING				
(Honors Engineering Course)				
SEMESTER IV				
Course Code	21EEEEH1001	IA Marks	30	
Number of Lecture Hours/Week	03+1T	Exam Marks	70	
Total Number of Lecture Hours	45	Exam Hours	03	

Credits-04		
COURSE OBJECTIVES:		
1. Introduce the electrical symbols and simple electrical circuits		
2. Able to learn the design of electrical installations.		
3. Able to learn the design of electrical installation for different types	of	
buildings and smallindustries.		
4 Learn the basic components of electrical substations		
5. Familiarize with the motor control circuits		
Unit -1		
Electrical Symbols and Simple Electrical Circuits		
Identification of electrical symbols - Electrical wiring Diagrams - Methods of	Hours-08	
representation of wiring diagrams - introduction to simple light and fan circuits -		
system of connection of appliances and accessories.		
Unit -2		
Design Considerations of Electrical Installations	Hours-10	
Electric supply system - Three-phase four wire distribution system - protection		
of electric installation against overload - short circuit and earth fault - earthing -		
neutral and earth wire - types of loads - systems of wiring - permissible of		
voltage drops and sizes of wires - estimating and costing of electrical		
installations.		
Electrical Installation for Different Types of Buildings and Small Industries	Hours-07	
material - simple examples on electrical installation for residential buildings -		
electrical installations for commercial buildings - electrical installation for small		
industries-case study.		
Unit – 4	-	
Substations	Hours-10	
Introduction - types of substations - outdoor substations-pole mounted type -		
indoor substations-floormounted type - simple examples on quantity estimation-		
case study.		
<u>Unit – 5</u>	<u>.</u>	
Motor control circuits	Hours-10	
Introduction to AC motors - starting of three phase squirrel cage induction		
motors - starting of wound rotor motors - starting of synchronous motors -		
contractor control circuit components - basic control circuits - motor protection.		

Course Outcomes:

After the completion of the course the student should be able to:

- 1. Demonstrate the various electrical apparatus and their interconnections.
- 2. Examine various components of electrical installations.
- 3. Estimate the cost for installation of wiring for different types of building and small industries.
- 4. Illustrate the components of electrical substations.
- 5. Design suitable control circuit for starting of three phase induction motor and synchronous motor.

Text Books:

1. Electrical Design and Estimation Costing - K. B. Raina and S.K.Bhattacharya – New AgeInternational Publishers - 2007.

References Books:

- 1. Electrical wiring estimating and costing S.L.Uppal and G.C.Garg Khanna publishers 6thedition 1987.
- 2. A course in electrical installation estimating and costing J.B.Gupta –Kataria SK & Sons 2013.

SCADA ENERGY MANAGEMENT SYSTEMS				
(Honors Engineering Course)				
SEMESTER IV				
Course Code	21EEEEH1002	IA Marks	30	
Number of Lecture Hours/Week	03+1T	Exam Marks	70	
Total Number of Lecture Hours	45	Exam Hours	03	
	Credits-04			
COURSE OBJECTIVES:	1, 1, 1			
1. overview of data acquisition system and	terms related			
2. control function of SCADA and applica	itions of functions			
3. different communication channels and r	related terms			
4. data base management systems and net	work data bases			
J. energy management center and load ma	inagement			
Conorol Concents			Houng 10	
General Concepts		cidence factor	110u15-10	
- Contribution factor - loss factor - Relation	onship between the load f	actor and loss		
factor – Numerical Problems – Load Model	ling and Characteristics –	Classification		
and characteristics of loads (Residential - com	nmercial - Agricultural and	Industrial)		
Unit -2	inneretai Aigneantarai anc	maastriar).		
Supervisory and Control Functions:			Hours-8	
Data acquisitions, status indications, measured values, energy values, monitoring				
alarm and event application processing. Con	ntrol function: ON/OFF co	ontrol of lines,		
transformers, capacitors and applications in p	process industry, valve, op	ening, closing		
etc. Regulatory functions: set points and	etc. Regulatory functions: set points and feed-back loops, time tagged data,			
disturbance data collection and analysis, calculation and report preparation.				
Unit – 3			·	
Man- Machine Communication:			Hours-7	
Operator consoles and VDUs, displays, opera	tor dialogues, alarm and e	vent loggers,		
mimic diagrams, report and printing facilities				
Unit – 4				
Data Bases - Scada, Ems And Network Da	ta Bases:		Hours-10	
SCADA system structure - local system, cor	nmunication system and c	entral system,		
Configuration- non- redundant single proce	essor, redundant dual pr	ocessor, multi		
control centers, system configuration. Perform	nanceconsiderations, real	time operation		
system requirements, languages.				

Unit – 5	
Energy Management Center	Hours-10
Functions performed at a centralized management center, production control and	
load management, economic dispatch, distributed centers and power pool	
management.	
Course Outcomes:	
The students should be able to:	
1. Analyze the general terms related to SCADA.	
2. Apply the Supervisory and control functions.	
3. Know the different communication modes and functions.	
4. Configure the data bases related to SCADA and Networks systems.	
5. Analyze the load and energy management.	
Text Books:	
1. Stuart A. Boyer, SCADA: Supervisory Control And Data Acquisition,	
The Instrumentation, Systems and Automation Society, 4th edition, 2009.	
2. Krishna Kant, Computer-Based Industrial Control, PHI Learning,2nd edition	,
2013	

LINEAR IC APPLICATIONS (Honors Engineering Course)				
	SEMESTER IV			
Course Code	21EEEEH1003	IA Marks	30	
Number of Lecture Hours/Week	03+1T	Exam Marks	70	
Total Number of Lecture Hours	45	Exam Hours	03	
Credits-04				
COURSE OBJECTIVES:				
1. To understand the basic operatio	n &performance parameters	of differential ampli	fiers.	
2. To understand & learn the measured	aring techniques of performa	nce parameters of O	P-AMP	
3. To learn the linear and non-linea	r applications of operational	amplifiers.		
4. To understand the analysis & des	sign of different types of acti	ve filters using opan	nps	
5. To learn the internal structure, op	peration and applications of	different analog ICs		
UNIT-I				
INTEGRATED CIRCUITS: Differen	tial Amplifier- DC and AC	C analysis of Dual		
input Balanced output Configuration	, Properties of other dif	ferential amplifier	Hours-	
configuration (Dual Input Unbalance	d Output, Single Ended	Input – Balanced/	10	
Unbalanced Output), DC Coupling and	Cascade Differential Amp	lifier Stages, Level		
translator.	1	e ,		
UNIT-II				
Characteristics of OP-Amps. Integrated	circuits-Types. Classificati	on. Package Types		
and Temperature ranges. Power supplie	es. Op-amp Block Diagram.	ideal and practical	Hours-	
Op-amp Specifications DC and AC c	haracteristics 741 op-amp	& its features. On-	10	
Amp parameters & Measurement Input	t & Out put Off set voltage	es & currents, slew	10	
rate CMRR PSRR drift Frequency Co	ompensation techniques			
UNIT-III	<u> </u>			
LINEAR and NON-LINEAR APPLIC	CATIONS OF OP-AMPS:			
Inverting and Noninverting amplifie	r. Integrator and differen	ntiator. Difference	Hours-	
amplifier Instrumentation amplifier A	Camplifier V to I I to V o	converters Buffers	7	
Non- Linear function generation. Com	parators Multivibrators Tri	angular and Square		
wave generators Log and Anti log Amn	lifiers Precision rectifiers	ingular and square		
UNIT-IV				
ACTIVE FILTERS ANALOG MUL	FIPLIERS AND MODUL	TORS		
Design & Analysis of Butterworth activ	e filters – 1st order 2nd orde	er I PF HPF filters	Hours-	
Band nass Band reject and all nass filter	rs		8	
Four Quadrant Multiplier IC 1496 Sam	nle & Hold circuits			
INIT-V				
TIMERS & PHASE LOCKED LOOP	PC .			
Introduction to 555 timer functional di	oram Monostable and Ast	able operations and		
applications Schmitt Trigger: PLI	introduction block scheme	tic principles and	Hours-	
description of individual blocks 565	DI I Applications of	DI I frequency	10	
multiplication fraguency translation A	M EM & ESK domodulators	TLL – frequency		
Applications of VCO (566)	vi, Fivi & FSK demodulators	•		
UUICUNIES	amplifiana for mariana angli	actions		
1. Design circuits using operational	amplifiers for various appli-	cations.		
2. Analyze and design amplifiers at	ind active inters using Op-am	ıp.		
5. Diagnose and trouble-shoot linea	ar electronic circuits.			
4. Understand the gain-bandwidth c	concept and frequency response	use of the amplifier		
configurations.	(· · · · · · · · · · · ·		
5. Understand thoroughly the opera	ational amplifiers with linear	integrated circuits.		
TEXT BOOKS:

- 1. Linear Integrated Circuits D. Roy Choudhury, New Age International (p) Ltd, 2nd Edition,2003.
- 2. Op-Amps & Linear ICs Ramakanth A. Gayakwad, PHI,1987.
- 3. Operational Amplifiers–C.G. Clayton, Butterworth & Company Publ. Ltd./Elsevier, 1971

REFERENCES :

- **1.** Operational Amplifiers & Linear Integrated Circuits –Sanjay Sharma ;SK Kataria&Sons;2nd Edition,2010
- **2.** Design with Operational Amplifiers & Analog Integrated Circuits Sergio Franco,McGraw Hill, 1988.
- **3.** OP AMPS and Linear Integrated Circuits concepts and Applications, James M Fiore, Cenage Learning India Ltd.
- **4.** Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin & Fredrick Driscoll,PHI, 6th Edition.
- 5. Operational Amplifiers & Linear ICs David A Bell, Oxford Uni. Press, 3rd Edition

RENEW	ABLE ENERGY SYSTEM	S		
(Honors Engineering Course) SEMESTER IV				
Course Code	21EEEEH1004	IA Marks	30	
Number of Lecture	3L+1T	Exam	70	
Hours/Week		Marks		
Total Number of Lecture Hours	45	Exam Hours	03	
	Credits-04			
COURSE OBJECTIVES:				
1. To study the solar radiation d	ata, extraterrestrial radiation,	radiation on ear	th's surface.	
2. To study solar thermal collec	tions.			
3. To study solar photo voltaic s	systems.			
4. To study maximum power po	oint techniques in solar pv and	d wind energy.		
5. To study basic principle and	working of hydro, tidal, biom	ass, fuel cell and	1	
Geothermal systems.				
UNIT-I				
Fundamentals of Energy Systems	and Solar energy			
Energy conservation principle – En	ergy scenario (world and Ind	ia) – various	Hours-08	
forms of renewable energy - Solar	radiation: Outside earth's atr	nosphere –	110015-00	
Earth surface – Analysis of solar ra	diation data – Geometry – Ra	adiation on		
tilted surfaces – Numerical problems.				
UNIT-II				
 Solar Photovoltaic Systems, Thermal Collectors & Evacuation Strategies: Solar Photovoltaic Systems: Solar photovoltaic cell, module, array – construction – Efficiency of solar cells – Developing technologies – Cell I-V characteristics – Equivalent circuit of solar cell – Series resistance – Shunt resistance – Applications and systems – Balance of system components – System design: storage sizing – PV system sizing – Maximum power point techniques: Perturb and observe (P&O) technique – Hill climbing technique. Solar Thermal Collectors: Flat plate and concentrating collectors-Solar Power Plant – Central tower receiving system. Evacuation Strategies: Strategies of Solar Power Evacuation 			Hours-10	
UNII-III Wind Occar Ward & This F			-	
Wind Enorgy: Docio principles of	rgy: Wind onergy conversion Cl	agaifiantian of		
WEC systems Herizontal and	Wind energy conversion, C	assilication of		
wEC systems, Horizontal and	i verucai axis windinini	s-Periormance	Hours-10	
characteristics – Betz criteria.				
Otean, wave & Huai Energy: OTEC Principle – Open and closed cycle of				
Example 1 Function Structures Wind & Tidel Dower Examples				
Evacuation Strategies: wind & 1	iual Power Evacuation			
UNII-IV Uvdno nowor gystorez			-	
nyuro power systems	otion of budge gratering I	a ama ¹¹	Harry 07	
micro measurement of head and flo Numerical problems.	w – Energy equation – Types	e, small, s of turbines –	Hours-07	

UNIT-V					
Biomass, fuel cells and geothermal systems					
Biomass Energy: Fuel classification – Pyrolysis – Direct combustion of heat –					
Different digesters and sizing. Fuel cell: Classification of fuel for fuel cells –	Hours-10				
Fuel cell voltage– Efficiency – V-I characteristics. Geothermal: Classification					
– Dry rock and hot acquifer – Energy analysis – Geothermal based electric					
power generation					
1. Analyze solar radiation data, extraterrestrial radiation, and radiation on eart	h's				
surface.					
2. Design solar photo voltaic systems and solar thermal collectors.					
3. Explain basic principle and working of Wind, Ocean, Wave & Tidal Energy	y systems.				
4. Describe the various hydro power generating systems.	-				
5. Explain basic principle and working of hydro, tidal, biomass, fuel cell and g	geothermal				
systems.					
TEXT BOOKS:					
1. Solar Energy: Principles of Thermal Collection and Storage, S. P. Sukhatn	ne and J. K.				
Nayak, TMH, New Delhi, 3rd Edition.					
2. Renewable Energy Resources, John Twidell and Tony Weir, Taylor and	d Francis -				
second edition,2013.					
REFERENCES :					
1. Energy Science: Principles, Technologies and Impacts, John Andrews and	Nick Jelly,				
Oxford University Press.					
2. Renewable Energy- Edited by Godfrey Boyle-oxford university.press,3 rd					
edition,2013.					
3. Handbook of renewable technology Ahmed and Zobaa, Ramesh C Bansal,	World				
scientific, Singapore.					
. Renewable Energy Technologies /Ramesh & Kumar /Narosa.					
5. Renewable energy technologies – A practical guide for beginners – Chetong Singh					
Solanki, PHI.Non conventional energy source –B.H.khan- TMH-2nd editio	n				

FUDAMENTAL OF ELECTRICAL CIRCUIT THEORY (Minor Engineering Course)

Ň	SEMESTER IV					
Course Code	21EEEEM1001	IA Marks	30			
Number of Lecture Hours/Week	03+1T	Exam Marks	70			
Total Number of Lecture Hours	45	Exam Hours	03			
	Credits-04					
COURSE OBJECTIVES:						
1. Concepts of passive elements,	types of sources and variou	is network reduction	n			
techniques and applications of e	electrical circuits.					
2. Behavior of RLC networks for	sinusoidal excitations.	6 6.1				
3. Performance of R-L, R-C and I	R-L-C circuits with variation	of one of the paran	neters and			
to understand the concept of res	onance.					
 Applications of heleneed and unhaleneed three phase aircuits. 						
5. Concepts of balanced and unbalanced three-phase circuits						
UNIT-I Introduction to Electrical Circuita						
Introduction to Electrical Circuits						
basic Concepts of active and passive			Hours-10			
(dependent), Kirchnoff's laws, Netw	ork reduction techniques (series, parallel,				
series - parallel, star-to-delta ai	nd delta-to-star transform	iation), source				
transformation technique, nodal analys	is and mesh analysis, Princip	ples of Duality				
UNIT-II						
Single Phase A.C Systems						
Periodic waveforms (determination of	f rms, average value, peak t	factor and form				
factor), concept of phase angle, ph	nase difference – waveform	ms and phasor				
diagrams, lagging and leading net	works, rectangular and p	olar forms of	Hours-7			
representations, steady state analysis of	of R, RL and RC circuits, p	ower factor and				
its significance, real, reactive and ap	parent power, waveforms c	of instantaneous				
power and complex power.						
Analysis of AC Networks						
Extension of node and mesh analysi	s to AC networks, numeric	al problems on	Hours-8			
sinusoidal steady state analysis, serie	es and parallel resonance, s	electivity, band	110015-0			
width and Quality factor Current Loci	is diagrams of RL, RC and R	C circuits				
UNIT_IV						
Network theorems						
Superposition theorem Thevenin's the	orem Norton's theorem Ma	ximum-nower	Hours-10			
transfer theorem. Reciprocity theorem	Millman's theorem. Tellege	n's theorem and	Hours IV			
Compensation theorem.	······					
UNIT-V						
Balanced and Unbalanced Three pha	ase circuits					
Phase sequence, star and delta conne	ction of sources and loads,	relation between				
line and phase voltages and currents, analysis of balanced three phase circuits, Hours-10						
measurement of active and reactive	power. Analysis of three p	phase unbalanced				
circuits: Loop method, Star-Delta tran	nsformation technique, two	wattmeter method				
for measurement of three phase power						
OUTCOMES						
The students should be able to:						
1. Analyze various electrical netv	vorks in presence of active an	nd passive elements				
2. Explore RLC networks with sin	nusoidal excitation.					

Analyze resonance conditions in electrical circuits.

- 4. Verify various network theorems.
- 5. Solve three- phase circuits under balanced and unbalanced condition

TEXT BOOKS:

- 1. Engineering Circuit Analysis by William Hayt and Jack E.Kemmerley, McGraw Hill Company, 6thedition.
- 2. Network Analysis: Van Valkenburg; Prentice-Hall of India Private Ltd.

REFERENCES :

- 1. Fundamentals of Electrical Circuits by Charles K.Alexander and Mathew N.O.Sadiku, McGraw HillEducation (India).
- 2. Linear Circuit Analysis by De Carlo, Lin, Oxford publications.
- 3. Electric Circuits (Schaum's outlines) by Mahmood Nahvi & Joseph Edminister, adapted by K.Uma Rao, 5th Edition McGraw Hill.
- 4. Electric Circuits by David A. Bell, Oxford publications.
- 5. Introductory Circuit Analysis by Robert L Boylestad, Pearson Publications.
- 6. Circuit Theory (Analysis and Synthesis) by A.Chakrabarthi, Dhanpat Rai&Co.

FUNDAMENTALS	OF ELECTROMAGNETI	C FIELD THEORY	ζ
(Minor Engineering Course SEMESTER IV)	
Course Code	21EEEEM1002	IA Marks	30
Number of Lecture Hours/Week	3L+1T	Exam Marks	70
Total Number of Lecture Hours	60	Exam Hours	03
	Credits-04		
 COURSE OBJECTIVES: 1. Electric field and potentials due to different configurations of static charges. 2. Properties of conductors and dielectrics, calculate the capacitance of different configurations. 2. Understand the constant of conduction and constant densities 			
 Understand the concept of conduction and convection current densities. Magnetic fields produced by currents in different configurations, application of Ampere's law and the Maxwell's second and third equations and to study the magnetic force and torque through Lorentz force equation in magnetic field environment like conductors and other current loops. Concept of self and mutual inductances and the energy stored. 			
UNIT-IElectrostaticsElectrostatic Fields – Coulomb's Law – Electric Field Intensity (EFI) – EFI dueto a line and a surface charge, work done in moving a point charge in anelectrostatic field, electric potential – properties of potential function potentialgradient, Guass's law – Maxwell's first law, div(D)= ρ_V Laplace's andPoison's equations and solution of Laplace's equation in one variable			
UNIT-II Conductors – Dielectrics and Capacitance Electric dipole – dipole moment – potential and EFI due to an electric dipole, Torque on an Electric dipole in an electric field conductors and Insulators – their behavior in electric field. Polarization, boundary conditions between conduction to dielectric and dielectric to dielectrics. Capacitance of parallel plates, spherical and coaxial cables with composite dielectrics, energy stored and energy density in a static electric field, current density, conduction and convection current densities, Ohm's law in point form – equation of continuity			Hours-10
Omm s naw in point form – equation of continuity UNIT-III Conductors – Dielectrics and Capacitance Electric dipole – dipole moment – potential and EFI due to an electric dipole, Torque on an Electric dipole in an electric field conductors and Insulators – their behavior in electric field. Polarization, boundary conditions between conduction to dielectric and dielectric to dielectrics. Capacitance of parallel plates, spherical and coaxial cables with composite dielectrics, energy stored and energy density in a static electric field, current density, conduction and convection current densities, Ohm's law in point form – equation of continuity			

UNIT	JV						
Self a	nd mutual inductance						
Self a	ad mutual inductance – determination of self-inductance of a solenoid and	Hours-10					
toroid	and mutual inductance between a straight long wire and a square loop wire						
in the	in the same plane – energy stored and density in a magneticfield.						
UNIT	·V						
Time	Varying Fields						
Time	varying fields: Faraday's laws of electromagnetic induction – its integral						
and p	point forms, Maxwell's fourth equation, Curl (E)= $-\partial B/\partial t$, statically and	Hours-10					
dynam	ically induced EMF – simple problems, modification of Maxwell's						
equati	ons for time varying fields, displacement current, Poynting theorem and						
Poynti	ng vector.						
OUTCO	DMES						
The stud	lent should be able to						
1.	Determine electric fields and potentials using guass's law or solving	laplace's or					
	possion's equations, forvarious electric charge distributions.						
2.	Calculate and design capacitance, energy stored in dielectrics.						
3.	Calculate the magnetic field intensity due to current, the application of ampe	ere's law and					
	the maxwell's second and third equations and determine the magnetic force	s and torque					
	produced by currents in magnetic field.						
4.	Determine self and mutual inductances and the energy stored in the magnetic	field.					
5.	Calculate induced emf, understand the concepts of displacement current a	and poynting					
	vector.						
TEXT	BOOKS:						
1.	Engineering Electromagnetics" by William H. Hayt& John. A. Buck						
	Mc. Graw-HillCompanies, / Editon.2006.						
REFER	ENCES :						
1.	"Principles of Electro Magnetics" by Sadiku, Oxford Publications,4th edition	1					
2.	2. "Introduction to Electro Dynamics" by D J Griffiths, Prentice-Hall of India Pvt.Ltd,						
	2ndedition						
3.	"Electromagnetic Field Theory" by Yaduvir Singh, Pearson.						
4.	Fundamentals of Engineering Electromagnetics by Sunil Bhooshan, Ox	xford higher					

Education.

FUNDAMENTALS OF CONTROL SYSTEMS					
(Mir	or Engineering Course	2)			
Course Code	SEMESTER IV 21FFFFM1002	IA Morks	30		
Number of Lecture Hours/Week	21EEEEM11005 3L+1T	Exam Marks	<u> </u>		
Total Number of Lecture Hours	60	Exam Hours	03		
	Credits-04				
COURSE OBJECTIVES:					
The objective of this course is to	acquire knowledge on				
1. Mathematical modeling of phys	ical systems and to use	block diagram algebi	ra and signal		
flow graph to determine overall transfer function					
2. Time response of first and second order systems and improvement of performance by					
proportional plus derivative and proportional plus integral controllers and to investigate					
the stability of closed loop syst	ems using Routh's stabi	lity criterion and the	e analysis by		
Frequency Response approache	a for the analysis of lin	oor time inverient (I	TI) austoma		
5. Frequency Response approache	Nyquist stability criterio	ear time mvariant (1	211) Systems		
4 Basic aspects of design and com	pensation of linear contr	ol systems using Bod	le plots		
5. State models and analyze the sy	stems and also to learn the	the concepts of Control	ollability and		
Observability.			,		
UNIT-I					
Mathematical modeling of control sys	stems				
Classification of control systems, open	loop and closed loop con	trol systems and			
their differences, Feedback characterist	ics, transfer function of li	near system,	Hours 10		
differential equations of electrical netwo	orks, translational androta	ational	110015-10		
mechanical systems, transfer function o	f DC servo motor – AC s	servo motor –			
synchro, transmitter and receiver – bloc	k diagram algebra – repr	esentation by			
signal flow graph – reduction using Ma	son's gain formula				
Standard test signals time response	of first and second ord	or exetome time			
domain specifications steady state	or first and second ord	er systems – time			
proportional (P) proportional-integral (PI) proportional-integra	l- derivative (PID)			
systems	1 1), proportional-integra		Hours-10		
Stability and root locus technique					
The concept of stability – Routh's stal	oility criterion – limitati	ons of Routh's			
stability, root locus concept -construct	ion of root loci (simple p	problems), Effect			
of addition of Poles and zeros to the tran	nsfer function.				
UNIT-III					
Frequency response analysis					
Introduction to frequency domain speci	fications – Bode diagram	ns – transfer	Hours-10		
function from the Bode diagram –phase margin and gain margin – stability					
analysis from Bode plots, Polar plots, N	yquist stability criterion.				
Classical control design techniques			H		
Lag load lag load componentors design	Lag, lead, lag-lead compensators, design of compensators using Bode plots.				
Lag, lead, lag-lead compensators, desig	ii or compensators using	Dode plots.			
State space analysis of LTI systems					
Concepts of state. state variables and	state model, state space	representation of	Hours-10		
transfer function, diagonalization, solving the time invariant state equations, State					

Transition Matrix and it's Properties, conceptsof controllability and observability.

OUTCOMES

The student should be able to

- 1. Derive the transfer function of physical systems and determination of overall transfer function usingblock diagram algebra and signal flow graphs.
- 2. Determine time response specifications of second order systems and absolute and relative stability of
- 3. LTI systems using Routh's stability criterion and the root locus method.
- 4. Analyze the stability of LTI systems using frequency response methods.
- 5. Represent physical systems as state models and determine the response. Understanding the concepts of controllability and observability.

TEXT BOOKS:

- 1. Control Systems principles and design by M.Gopal, Tata McGraw Hill education Pvt Ltd., 4th Edition.
- 2. Automatic control systems by Benjamin C.Kuo, Prentice Hall of India, 2nd Edition.

REFERENCES :

- 1. Modern Control Engineering by Kotsuhiko Ogata, Prentice Hall of India.
- 2. Control Systems by ManikDhanesh N, Cengage publications.
- 3. Control Systems Engineering by I.J.Nagarath and M.Gopal, Newage International Publications, 5th Edition.
- 4. Control Systems Engineering by S.Palani, Tata McGraw Hill Publications.

	Course Structure for III B. Tech I Semester Under the Regulations of SITE-21							
	V SEMESTER							
S. No	Course Category	Course Code	Course Title	L	Т	Р	С	
1	PC	21EEEET5010	Power Generation, Transmission & Distribution	3	0	0	3	
2	PC	21EEEET5020	Power Electronics	3	0	0	3	
3	PC	21EEEET5030	Control Systems	3	0	0	3	
4	OE	21EEXXO504X	Open Elective-I	2	0	2	3	
5	PE	21EEEP505X	Professional Elective-I	3	0	0	3	
6	PC LAB	21EEEEL5060	Power Systems –I Lab	0	0	3	1.5	
7	PC LAB	21EEEEL5070	Power Electronics Lab	0	0	3	1.5	
8	SAC/SC	21EEXXS5080	PDPC / Aptitude Builder - 1	1	0	2	2	
9	MC	21EEEEN5090	Energy studies	2	0	0	0	
10	SI	21EEEEI5010	Summer Internship (1-2 months) after second year to evaluate in V semester	0	0	0	1.5	
			TOTAL	17	0	10	21.5	
11	H/M		Honor/Minor courses(The hours distribution can be 3-0-2 or 3-1-0)	4	0	0	4	

Professional Elective – I

S. No	Course Code	Course Title	L	Т	Р	С
1	21EEEP505A	Special Electrical Machines.	3	0	0	3
2	21EEEP505B	Electrical Energy conservation & Auditing.	3	0	0	3
3	21EEEP505C	Digital signal Processing	3	0	0	3

Open Electives offered by EEE department

S.No	Course Code	Subject title	L	Т	Р	С
1	21XXEEOM0XA	Control system design	3	0	0	3
2	21XXEEOM0XB	Digital Control Systems	3	0	0	3
3	21XXEEOM0XC	Intelligent control & its applications	3	0	0	3
4	21XXEEOM0XD	Digital Signal Processing	3	0	0	3
5	21XXEEOM0XE	Electrical and Hybrid Vehicles	3	0	0	3
6	21XXEEOM0XF	Industrial Electrical Systems	3	0	0	3
7	21XXEEOM0XG	Electrical materials	3	0	0	3
8	21XXEEOM0XH	Optimization techniques	3	0	0	3
9	21XXEEOM0XI	Wind and Solar Energy Systems	3	0	0	3

Course structure for Electrical & Electronics Engineering Honors (for EEE Students)

III B. Tech I Semester:

S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21EEEEH511A	Electrical Machine Design	3	1	0	4
2	21EEEEH511B	Utilization of Electrical Energy &	3	1	0	4
		Traction				
3	21EEEEH511C	Solar and Advanced Energy	3	1	0	4
		Storage System				
4	21EEEH511D	Modern Control Systems	3	1	0	4

Course structure for Electrical & Electronics Engineering Minors to other Departments

III B. Tech I Semester:

S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21XXEEM511A	Fundamentals of Electrical	3	1	0	4
		Machines				
2	21XXEEM511B	Fundamentals of Power	3	1	0	4
		Electronics				
3	21XXEEM511C	Electrical Measurements &	3	1	0	4
		Instrumentation				

Professional Core Course:

S. No	Course Category	Course Code	Course Title
1	PC	21EEEET5010	Power Generation, Transmission & Distribution
2	PC	21EEEET5020	Power Electronics
3	PC	21EEEET5030	Control Systems
5	PE	21EEEP505X	Professional Elective-I
6	PC LAB	21EEEEL5060	Power Systems –I Lab
7	PC LAB	21EEEEL5070	Power Electronics Lab
8	SAC/SC	21EEXXS5080	PDPC/ Aptitude Builder - 1
9	MC	21EEEEN5090	Energy studies

POWER GENER	ATION, TRANSMISS SEMESTER-V	SION & DISTRIBUTION	[
Subject Code	21EEEET5010	IA Marks	30
Number of Lecture Hours/Week	31	Exam Marks	70
Total Number of Lecture Hours	50	Exam Marks Exam Hours	03
Total Number of Decture Hours	Credits-03	Exam Hours	05
Course Objectives:	creates of		
This course will enable student to :			
• Understand the concents of electric	rical nower generation h	w hydro, thermal and Nucl	ear nower
plants	fical power generation t	y nyero, thermai and ivier	car power
• Understand the concents of elect	migal design of the over	head lines	
• Understand the concepts of elect	haniaal daaian af tha ar	head lines.	
• Understand the concepts of mech		ernead lines.	
• Understand the performance of t	ne cables used in powe	r transmission.	
• Understand the basic concepts o	t distribution system.		T
Unit 1: Conventional Methods of Po	wer Generation		-
Generation of electrical energy by	conventional methods	s, Principle operation of	
Hydro Electric Generation: Classifi	cation of hydro plant,	, Selection of site, Plant	
layout.			Hours-10
Principle operation of Thermal Po	wer Generation: Bloc	k diagram of the plant.	
Boilers: working and classification	n. Principle of energy	production by nuclear	
fission, schematic of nuclear power p	olant.		
Unit 2: Electrical Design of Overhea	d lines	• • • •	-
Transmission line parameters: resi	stance, inductance and	capacitance calculations -	
single phase and three phase lines, d	ouble circuit line, effec	t of earth on transmission	II. 10
Ine capacitance.			Hours-10
reformance of transmission life	les: representation of	lines, classification of	
condensor method) length transmission	on nne, meanum (Non	minai-1, Nominai- <i>n</i> , End	
ARCD peremeters, surge impedance	and SIL of long lines	ission line, evaluation of	
ABCD parameters, surge impedance	and SIL of long lines.		
See and Tension calculations with	eau Lilles	abte of toward Effect of	-
Wind and Ice on weight of Condu	equal and unequal net	and sag template and its	Hours 10
applications	tor – Sumging chart	and sag template and its	110015-10
Types of Insulators – String efficient	ency and Methods for	improvement - Voltage	
distribution-Calculation of string	efficiency – Canacita	ince grading and Static	
Shielding	enterency Capacita	linee grading and Statie	
Unit 4. Underground Cables			
Types of cables construction types	of insulating materials	calculation of insulation	-
resistance stress in insulation and p	ower factor of cable - (Capacitance of single and	10
3-Core belted Cables. Grading of	cables: capacitance	grading and intersheath	Hours-10
grading.	• • • • • • • • • • • • • • • • • • •	8	
Unit 5: Distribution Systems			+
Introduction to distribution systems - 1	Distribution system loss	ses – Coincidence factor –	-
Contribution factor – loss factor – Rel	ationship between the	load factor and loss factor	Hours-10
– Numerical Problems – Load Mod	leling and Characteris	tics – Classification and	
characteristics of loads (Reside	ential - commercial	- Agricultural and	
Industrial).Reactive power compensation	ion		

Course outcomes:

On completion of the course student will be able to:

- 1. Illustrate various components of hydro, thermal and nuclear power generation.
- 2. Estimate various factors related to electrical design of the overhead lines.
- 3. Estimate various factors related to mechanical design of the overhead lines.
- 4. Discuss the types of cables and their capacitance calculations.
- 5. Discuss the basic definitions and concepts of distribution system.

Text Books:

- 4. A Text Book on Power System Engineering by M.L.Soni, P.V.Gupta, U.S. Bhatnagar and A. Chakrabarti, DhanpatRai& Co. Pvt. Ltd, 2016.
- 5. Generation, Distribution and Utilization of Electric Energy by C.L.Wadhawa, New age International (P) Limited, Publishers, 3 rd edition.
- 6. O. I. Elgerd, "Electric Energy Systems Theory", McGraw Hill Education.

- 1. Elements of Electrical Power Station Design by M V Deshpande, PHI, New Delhi.
- 2. B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanayake and G. Strbac, " Electric Power Systems", Wiley.

PO	WER ELECTRONICS		
Subject Code	SEMESTER-V 21FFFFT5020	IA Morks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
Total Number of Eccure Hours	Crodits 03		0.5
Course Objectives:	creatis – 05		
This course will enable student.			
1. To study the static and dynamic of	characteristics of SCR. Po	ower MOSFET and Pow	ver IGBT.
2. To understand the operation	of single-phase con	trolled rectifiers.	
3. To study the operation of three pl	hase-controlled converter	s for three pulse, six pu	lse and
bridge configurations.		I I I I I I I I I I I I I I I I I I I	
4. To understand the operation of d	ifferent types of DC-DC of	converters and AC-AC	
Converters.			
5. To study the operation of differen	nt types of DC-AC conve	rters.	1
Unit-1: Power Semi-Conductor Devic	ces		
Silicon controlled rectifier (SCR) –	Fwo transistor analogy -	• Static and Dynamic	
characteristics – 1 urn on and 1 urn of	t Methods - Triggering	Methods (R, RC and	Hours-8
MOSET and Power IGBT	alle and Dynamic Chai	actenistics of Power	
Unit – 2: Single & Three Phase AC-I)C Converters		
Single-phase half-wave controlled re	ctifiers - R and RL loa	ds with and without	
freewheeling diode - Single-phase fu	lly controlled mid-point	and bridge converter	
with R load, RL load and RLE load - E	ffect of source inductance	e in Single-phase fully	Hours-10
controlled bridge rectifier - Expressi	on for output voltages -	- Single-phase Semi-	
Converter with R load-RL load and	RLE load - Harmonic	Analysis, Numerical	
Problems.			
Introduction to three phase converters -	- Three pulse and six puls	se converters – Bridge	
configuration with R and RL loads -	average load voltage – I	Dual converters (both	
single phase and three phase - Principle	e of operation only).		
Unit – 3: DC-DC Converters	Control Stratesian D	1 D	
DC-DC Converters - Introduction -	Control Strategies, Bi	ick converter, Boost	Uours Q
Converter, Buck-Boost converter,			nours – o
Unit – 4: DC-AC Converters			
Introduction - Single phase and 3-pha	se bridge inverters with	R and RL loads – 3-	
phase square wave inverters -120° cond	uction and 180° conducti	on modes of operation –	
PWM inverters – Quasi-square wave p	ulse width modulation – S	Sinusoidal pulse width	TT
modulation –Voltage Source Inverter (VSI) – Current Source In	verter (CSI).	Hours –
Unit – 5: AC-AC Converters			12
AC-AC Converters- Introduction - Sing	gle phase AC voltage cor	troller with R and RL	•
loads – modes of operation of TRIAC	– TRIAC with R and RI	loads – Derivation of	Hours – 7
RMS load voltage, current and input	power factor. Cyclo co	nverters (Principle of	
operation only).		Ň I	

Course outcomes:

On completion of the course student will be able to:

- 1. Analyze the static and dynamic characteristics of SCR, Power MOSFET and Power IGBT.
- 2. Explain the operation of single-phase controlled rectifiers.
- 3. Explain the operation of three phase-controlled converters for three pulse, six pulse and bridge configurations.
- 4. Analyze the operation of different types of DC-DC and AC-AC converters.
- 5. Explain the operation of different types of DC-AC converters.

Text Books:

- 1. Power Electronics: Circuits, Devices and Applications by M. H. Rashid, Pearson, 4th edition.
- 2. Power Electronics: Essentials & Applications by L.Umanand, Wiley, Pvt. Limited, India.

- 1. Power Electronics by Vedam Subramanyam, New Age International (P) Limited, Publishers.
- 2. Power Electronics by V.R.Murthy, 1st edition OXFORD University Press.
- 3. Power Electronics by P.S. Bhimbra, Khanna Publishers.
- 4. Power Electronics: converters, applications & design -by Nedmohan, Tore M. Undeland, Robbins by Wiley India Pvt. Ltd.

	CONTROLSYSTEM	S	
	SEMESTER-V		20
Subject Code	21EEEE15030	IA Marks	30
Number of Lecture Hours/Week	<u>3L</u>	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits-03		
COURSE OBJECTIVES:			
This course will enable students :			
1. To derive mathematical mo	odels related and also Tra	ansfer function to various pl	hysical
systems.			
2. To analyze the behavior of	second order systems an	nd determine error constants	5
3. To analyze the stability of	systems using Frequency	y response methods	
4. To design various compens	sators to improve the per	formance of systems	
5. To able to determine controll	ability and Observability a	nd STM of given system.	
Unit -1: Mathematical Modeling of	f Control systems		
Mathematical models of electrical a	nd mechanical (translati	onal and rotational)	
systems, Force-Voltage and Force-	Current analogies. Trans	fer function models of	Hours-09
linear time invariant systems.Feedba	ack Control: Open Loop ar	nd Closed loop systems,	
Applications Benefits of Feedback. H	Block diagram algebra. Sig	nal Flow Graph Mason's gain	
formula.			
Unit -2: Time Response Analysis			
Standard test signals. Time respons	e of first and second ord	er systems for standard test	
inputs. Application of initial and fir	al value theorem. Classi	ification of errors and error	
constants. Design specifications for	second order systems ba	ased on the time response.	Hours-09
Concept of Stability. Routh-Hurwit	z Criteria. Relative Stabi	ility analysis.	
Root Locus technique. Construction	n of Rootloci.	5	
Unit – 3: Frequency Response An	alysis		
Frequency domain specifications.	Relationship between tim	e and frequency	
response, Bode plots, Polar plots, N	yquist stability criterion	. Relative stability	Hours-09
using Nyquist criterion.		-	
Unit – 4: Control System Design			
Introduction to P,PI,PID controllers	, design of Lag, Lead a	nd Lag Lead compensator	Hours-09
using Bode Plot approach, Effects of	of addition of poles and z	zeros on stability.	
Unit – 5: State Snace Analysis	1	, , , , , , , , , , , , , , , , , , ,	
Concepts of state variables State st	ace model. Canonical fo	orms of State Matrix	-
Solution of state equations State tr	ansition matrix Figen va	alues and Stability Analysis	Hours-00
Concept of controllability and obse	ryahility	fues and Stability Marysis.	110013-07
COURSE OUTCOMES	Ivaointy.		
COURSE OUTCOMIES:			
On completion of the course studen	t will be able to:		
1. Derive transfer function of diff	terent physical Systems.		
2. Analyze the behavior of secon	d order system with time	e domain specifications.	
3. Compute Stability of LTI syste	em using Bode Plot, Nyq	uist plot and polar plot.	
4. Analyze the different controlle	rs		
5. Determine controllability and	Observability and STM (of given system.	
TEXTBOOKS:			
1. B.C.Kuo, "AutomaticControlSy	stem",PrenticeHall		
2. K.Ogata, "ModernControlEngin	neering", PrenticeHall.		
I.J.NagrathandM.Gopal,"Cont	rolSystemsEngineering"	,NewAgeInternational.	

REFERENCE BOOKS:

- $\label{eq:linear} 1. \ Control Systems by N.K. Sinha, New Age International (P) Limited Publishers, 3^{rd} Edition.$
- $\label{eq:controlsystems-byA.Nagoorkani, CBS publications$
- 3. Problems&solutionsincontrolsystems-byA.K.Jairath.

РО	WER SYSTEMS LAB SEMESTER-V		
Subject Code	21EEEEL5050	1A-Marks	15
Number of Practice Hours/Week	3P	Exam-Marks	35
Total Number of Practice Hours	36	Exam-Hours	03
	Credits- 1.5		

COURSE-OBJECTIVES:

This course will enable student to :

- 1. Understand the concepts of electrical design of the overhead lines.
- 2. Understand the concepts of mechanical design of the overhead lines.
- 3. Understand the concepts of Power angle characteristics.
- 4. Understand the Characteristics solar PV array.
- 5. Understand the Measurement of earth resistance.

List-of-Experiments-(Any-ten-experiments-must-be-conducted)

- 1. Transmission line parameter calculations (inductance & capacitance)
- 2. ABCD parameters of Transmission line.
- 3. Characteristics of transmission line with open & short circuit termination
- 4. Power angle characteristics of a salient pole synchronous machine.
- 5. Study of different types of insulators
- 6. Voltage distribution across the string insulator
- 7. Determination of string efficiency using longer cross arm method.
- 8. Determination of string efficiency using guard ring method.
- 9. Characteristics solar PV array.
- 10. Determination of breakdown strength of transformer oil
- 11. Measurement of earth resistance by earth tester

COURSE-OUTCOMES:

On completion of the course student will be able to:

- 1. Estimate various factors related to electrical design of the overhead lines
- 2. Estimate various factors related to mechanical design of the overhead lines.
- 3. Analyze the Power angle characteristics of a salient pole synchronous machine.
- 4. Analyze the Characteristics solar PV array.
- 5. Estimate the earth resistance by earth tester.

PO	WER ELECTRONICS LAB SEMESTER-V		
Subject-Code-	21EEEET5060	1A-Marks	15
Number-of-PracticeHours/Week	3P	Exam-Marks	35
Total-Number-of-Practice-Hours	36	Exam-Hours	03
	Credits-1.5		
LAB-OBJECTIVES:			
1. To study the characteristics of v	arious power electronic devi	ices and analyze firing	
circuits and commutation circui	ts of SCR.		
2. To analyze the performance of s	single-phase-controlled recti	fiers with resistive and	
inductive loads.			
3. To analyze the performance of	three-phase-controlled rectif	iers with resistive and	
inductive loads.			
4. To understand the working of B	suck, Boost and Buck boost of	converters.	
5. To understand the operation of	AC voltage regulator with re	sistive and inductive lo	ads.
List-of-Experiments-(Any-ten-ex	xperiments-must-be-conducte	d)	
1. Study of Characteristics of Thy	ristor, MOSFET & IGBT.		
2. Single Phase Half controlled co	nverter with R and RL load	T 1 1	
3. Single Phase fully controlled br	idge converter with R and R.	L loads	
4. Infee Phase fully controlled col	loton with D and DL L and		
5. Single Phase AC Voltage Regul	allor with R and KL Loads		
 Three Phase AC-AC voltage leg Single phase DWM inverter with 	gulator with K-load.	200	
7. Single Phase square wave bridg	e inverter with R and RL I o	ue.	
9 Design and development of a fi	ring circuit for Thyristor	aus	
10 Design and development of gate	e drive circuits for IGBT		
11 Design and verification of volta	ges gain of Boost converter	in Continuous Conducti	ion Mode
(CCM) and Discontinuous Con	duction Mode (DCM).		1011 101000
LAB-OUTCOMES:			
Students will be able to:			
1 Explain the characteristics of va	rious power electronic devic	es and design the gate of	drive
circuits of SCR. IGBT and MO	SFET.	tes and design the gate (uii , v
2 Analyze the performance of sin	gle_phase-controlled rectifie	rs with resistive and ind	ductive
loads.	Bre phase controlled rectille	is which residence and fill	
3. Analyze the performance of the	ee_phase-controlled rectifier	s with resistive and ind	uctive
loads.	r range controlled technici		
4 Design and control the voltage i	ripple of Buck converter and	Boost converter in CC	M and

- 4. Design and control the voltage ripple of Buck converter and Boost converter in CCM an DCM.
- 5. Explain the operation of AC voltage regulators with resistive and inductive loads.

ENERGY STUDIES			
Subject Code	21EEEEN5090	IA Marks	30
Number of Lecture Hours/Week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits-04		
Course Objectives:			
This course will enable students :			
1. To study energy conservation			
2. To study Solar. Nuclear. Geotherm	al. Tide and Wind En	ergies.	
3.To study Role of energy in economi	ic development	0	
4.To study Indian Energy Scenario	1		
5. To study Energy policy issues at gl	obal level		
Unit -1: Energy Sources			
Fossil fuels, hydro, solar, tide, wind and	l bio fuels in India, Nu	uclear energy	Hours – 05
through fission and fusion processes.			
Unit – 2: Energy Conversion			
Energy conversion from source to utility	y, hydro, solar, tide, w	vind and bio fuels in	Hours – 10
India, Nuclear energies.			
Unit – 3: Global Energy Scenario			
Role of energy in economic development	nt and social transform	nation, Overall	
energy demand, availability and consum	nption, Depletion of e	nergy resources and	Hours – 10
its impact on economy, Nonproliferation	n of nuclear energy. In	nternational energy	
policies of G-8, G-20, OPEC and Europ	ean union countries.		
Unit – 4: Indian Energy Scenario			
Commercial and noncommercial forms of energy, Utilization pattern in the past,			Hours – 10
present and also future prediction, Sector wise energy consumption.			
Unit – 5: Energy Policy			
Energy policy issues at global level, national level and state level, Electricity act			Hours – 10
2003,Electricity amendment act. Energy	y pricing and its impac	ct on global	
Course outcomes:			
On completion of this course, students a	re able to		
1. Understand the energy conservation			
2. Understand the Solar, Nuclear, Geo	thermal, 11de and W1	nd Energies.	
5. Understand the Indian Energy in e	conomic developmen	l	
4. Understand the Energy policy issue	iano		
Toxt Books:	es at global level		
1 Jose Goldenberg Thomas Johanson	and Reddy $\Delta K N F$	Energy for Sustainable	World
WileyFastern	and Reddy, M.R.N., I	liergy for Sustainable	, world,
2. Charles E. Brown, World Energy Res	sources. Springer Pub	lication. New York	
3. Culp. A.W., Principles of Energy Conversion, McGraw Hill New York.			
Reference Books:			
1. Bukhootsow, B., Energy Policy and Planning, Prentice Hall of India, New Delhi.			
2. TEDDY Year Book, The Energy Res	search Institute (TER	I).	
3. International Energy Outlook, EIA A	Annual Publication.		

Professional Elective – I

S. No	Course Code	Course Title
1	21EEEP505A	Special Electrical Machines.
2	21EEEP505B	Electrical Energy conservation & Auditing.
3	21EEEP505C	Digital signal Processing

SPECIAL ELECTRICAL MACHINES			
Subject Code	21EEEEP505A	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits – 03		
Course Objectives: The objectives of this course is to acc 1. Properties of magnetic materi 2. Performance and control of st 3. Theory of operation and contr 4. Characteristics and performan 5. Principle of operation of linea	quire knowledge on the als and the operation of repper motors and their a rol of switched reluctanc ince of PM BLDC motors or induction motor	PMDC motors. applications. ee motor. s.	
Unit-1: Introduction of PMDC mote Introduction-Classification of perm machines-minor hysteresis loop and machines- Permanent-magnet ma demagnetization characteristics.	tors nanent magnet materia l recoil line-Stator fram terials and characteri	Is used in electrical les of conventional dc istics-B-H loop and	Hours –08
Unit – 2: Stepper Motors Classification of stepper motors Construction and principle of hybrid configuration for switching the phase Open loop and closed loop control o and principle of operation of VRM - control of 3- phase VR Stepper Moto	–Variable Reluctance d type synchronous step e windings control circui f 2-phase hybrid steppin – Single stack and multi r- Applications	e Motor (VRM) - oper motor – Different ts for stepper motors – ng motor. Construction iple stack – Open loop	Hours –08
Unit – 3: Switched Reluctance Mot Construction – Comparison of conve – Design of stator and rotor pole a expression – Different converter c circuits for SRM – Position sensing c	ors entional and switched re- rcs – Torque producing onfigurations for SRM of rotor – Applications o	luctance motors(SRM) g principle and torque I – Drive and power f SRM	Hours –09
Unit – 4: Permanent Magnet Brush Types of constructions – Surface m Principle of operation of BLDC m permanent magnet brushless motor and efficiency- Square wave brush Torque and EMF equations of sine Phasor Diagram – Circle diagram – 7	hless DC Motor ounted and interior type notor. Torque and EMI – Torque speed charact less motors with 120 ⁰ e wave permanent mag Torque/speed characteris	e permanent magnet – F equations of square eristics – Performance and 180 ⁰ conduction. net brushless motor – tics – Applications.	Hours –12
Unit – 5: Linear Induction Motors Construction– principle of operation- from rotating type Induction Moto Development of one-sided LIM with	–Double sided Linear Ir r – Schematic of LIM back iron- equivalent ci	duction Motors (LIM) I drive for traction – rcuit of LIM.	Hours –08

Course Outcomes:

The students should be able to:

- 1. Acquire knowledge on the characteristics and application of PMDC motors.
- 2. Explore different types, construction and principle of operation of different types of stepper motors and their applications.
- 3. Explain theory of operation of switched reluctance motor and its control.
- 4. Aanalyze the performance of PMBLDC motors.
- 5. Explain the operation of linear induction motor drive for traction purpose.

Text Books:

1. Brushless Permanent magnet and reluctance motor drives, Clarenden press, T.J.E. Miller,Oxford.

2. Special electrical Machines, K.VenkataRatnam, University press, New Delhi.

Reference Books:

1. Special electrical machines, E.G. Janardhanan, PHI learning private limited.

ELECTRICAL ENERGY CONSERVATION AND AUDITING			
Subject Code	SEMESTER-V 21EEEEP505B	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits-03		
 Course Objectives: This course enable student to: To understand energy efficiency To design energy efficient lighti To estimate/calculate power fact techniques and to understand the To understand energy conservat To calculate life cycle costing an efficient technologies. Unit-1: Basic Principles of Energy Au Energy audit – Definitions – Concept index – Pie charts –Sankey diagrams schemes and energy saving potential – management – Initiating, planning, con – Energy manager – Qualities and functions for top management.	y, scope, conservation and ing systems. tor of systems and propose e working of Energy Instr- ion in HVACsystems. nalysis and return on inve- idit and management – Types of audit – Energy s – Load profiles – En Numerical problems – Pro- ntrolling, promoting, mo etions – Language – Ques	d technologies. se suitable compens ruments. estment on energy ergy index – Cost ergy conservation rinciples of energy nitoring, reporting stionnaire – Check	ation Hours – 08
Unit – 2: Lighting Modification of existing systems – Rep Definition of terms and units – Lumino illumination level – Illumination of in brightness – Types of lamps – Type (luminaries) – Flood lighting – White li Energy conservation measures.	placement of existing synus efficiency – Polar curvinclined surface to beam es of lighting – Electric ght LED and conducting	stems – Priorities: ve – Calculation of a – Luminance or c lighting fittings Polymers –	Hours – 10
Unit – 3: Power Factor and energy in	struments		
Power factor – Methods of improveme with non linear loads – Effect of h problems. Energy Instruments – Watt-h – Pyrometers – Lux meters – Tong teste	ont – Location of capacito parmonics on Power fa nour meter – Data loggers ers – Power analyzer.	ors – Power factor ctor – Numerical s –Thermocouples	Hours – 10
Unit – 4: Space Heating and Ventilati Ventilation -Air-Conditioning (HVAC) of buildings -Transfer of Heat–Space conditioning- Insulation-Cooling load conservation methods.	ion and Water Heating: Intr e heating methods -Ve -Electric water heating	roduction, Heating ntilation and air– g systems-Energy	Hours – 08

Unit – 5: Computation of Economic Aspects and Financial Analysis	
Understanding energy cost, Economics Analysis – Depreciation Methods – Time	
value of money – Rate of return – Present worth method – Replacement analysis –	
Life cycle costing analysis - Energy efficient motors (basic concepts) -	
Economics of energy efficient motors and systems. Need of investment, appraisal	Hours 0
and criteria, Calculation of simple payback period-Return on investment – Net	nours – 9
present value - Internal rate of return - numerical examples Applications of life	
cycle costing analysis – Return on investment – Numerical examples.	
Course outcomes:	
On completion of the course student will be able to:	
1. Explain energy efficiency, conservation and various technologies	
2. Design energy efficient lighting system	
3. Calculate power factor of systems and propose suitable compensation techniques	and also
able to explain the working of Energy Instruments.	
4. Explain energy conservation techniques in HVAC Systems	
5. Calculate life cycle costing analysis and return on investment on energy efficience	cy
technologies	5
Text Books:	
1. Hand Book of Energy Audit by Sonal Desai- Tata McGrawhill	
2. Energyefficient electric motors by John .C. Andreas. Marcel DekkerIncLtd-2 nd editio	n.
D-frame - D lar	-
KeierenceBooks:	4:
1. Energy management by w.R. Murphy & G. Mickay Butter worth, Elsevier publica	tions.
2. Electric Energy Utilization and Conservation by S C Tripatny, Tata McGraw hill	publishing
company Ltd. NewDelhi.	
3. Energy management by Paul o' Callaghan, Mc–Graw Hill Book company–1st edit	10n.
. Energy management hand book by W.C.Turner, John wiley andsons.	
5. Energy management and conservation –k v Sharma and pvenkataseshaiah-I K Internet and conservation –k v Sharma and pvenkataseshaiah-I K Internet and conservation –k v Sharma and pvenkataseshaiah-I K Internet and conservation – k v Sharma and pvenkatase	ernational
Publishing Housepvt.ltd.	
6. http://www.energymanagertraining.com/download/Gazette_of_IndiaPartIISecI-3	7_25-08-
2010.pdf	

DIGITAL SIGNAL PROCESSING SEMESTER-V			
Subject Code	21EEEEP505C	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits – 03		
 Course Objectives: This course will enable student to : A good understanding of the fur. Familiarity with techniques of a transforms. Knowledge of spectral properties Fourier transform (FFT) of sequence of the design of digital fills. Understanding of Applications Unit-1: Discrete-time signals and systems: orthogonal basis; Representation equations, Sampling and reconstruct theorem and Nyquist rate. Unit – 2: Z-transform z-Transform, Region of Converge systems using z- transform, Proper Interpretation of stability in z-domain 	ndamentals of discrete-time analysis of discrete-time system es of discrete-time system iences. ters. of Digital Signal Processi systems Sequences; representati of discrete systems ruction of signals - ali nce, Analysis of Linear erties of z-transform for in, Inverse z-transforms.	me signals and systems ignals and the users in through the users in generating difference tasing; Sampling for Shift Invariant r causal signals,	stems. e of Z- of Discrete Hours –08 Hours –08
Unit – 3: Discrete Fourier Transfe Frequency Domain Analysis, Discr of DFT, Convolution of signals Parseval's Identity, Implementation	orm ete Fourier Transform (I s, Fast Fourier Transfo of Discrete Time System	DFT), Properties orm Algorithm, as.	Hours –09
Unit – 4: Design of Digital filters Design of FIR Digital filters: Win Design of IIR Digital Filters: Approximations; Low-pass, Band- Effect of finite register length in parametric spectral estimation. Intro	ndow method, Park-McC Butterworth, Chebysho pass, Band- stop and I FIR filter design. Para eduction to multi-rate sign	Clellan's method. ev and Elliptic High-pass filters. metric and non- nal processing.	Hours –12
Correlation Functions and Power Sp filtering using ARMA Model, Linea Filter.	pectra, Stationary Process r Mean-Square Estimation	es, Optimal on, Wiener	Hours –08

Course outcomes:

On completion of the course student will be able to:

- 1. Represent signals and systems mathematically discrete-time without aliasing
- 2. Analyse discrete-time systems using z-transform.
- 3. Apply the Discrete-Fourier Transform (DFT) and the FFT algorithms.
- 4. Design digital filters for various applications.

5. Apply digital signal processing for the analysis of real-life signals

Text Books:

- 1. S.K.Mitra, "Digital Signal Processing: A computer based approach", Mc GrawHill.
- 2. A.V.Oppenheim and R.W.Schafer, "Discrete Time Signal Processing", Prentice Hall.
- 3. J.G.Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algorithms And Applications", Prentice Hall.
- 4. L.R. Rabiner and B.Gold, "Theory and Application of Digital Signal Processing", Prentice Hall.

- 1. J. R.Johnson, "Introduction to Digital Signal Processing", PrenticeHall.
- 2. D.J.DeFatta ,J.G.Lucas and W.S.Hodgkiss," Digital Signal Processing", JohnWiley & Sons.
- 3. Andreas Antoniou, "Digital Signal Processing", TATA McGraw Hill.
- 4. Robert J. Schilling, Sandra L. Harris, **"Fundamentals of Digital Signal Processing using Matlab"**, Thomson.

S.No	Course Code	Subject title
1	21XXEEOM0XA	Control system design
2	21XXEEOM0XB	Digital Control Systems
3	21XXEEOM0XC	Intelligent control & its applications
4	21XXEEOM0XD	Digital Signal Processing
5	21XXEEOM0XE	Electrical and Hybrid Vehicles
6	21XXEEOM0XF	Industrial Electrical Systems
7	21XXEEOM0XG	Electrical materials
8	21XXEEOM0XH	Optimization techniques
9	21XXEEOM0XI	Wind and Solar Energy Systems

CONTROL SYSTEM DESIGN					
Subject Code	21XXEEOM0XA	IA Marks	30		
Number of Lecture Hours/week	3L	Exam Marks	70		
Total Number of Lecture Hours	45	Exam Hours	03		
	Credits – 03				
Course Objectives:					
This course will enable student to :					
1. Know the design of compens	ator for both time and frequ	ency domain specific	cations.		
2. Know the design of various c	controllers.				
3. Understand the concept on fe	ed-forward control.				
4. Enhance the knowledge of de	esign using state space				
5. Understand the methods of se	olving Non-linear system of	f equations.			
Unit – 1: Design Specifications					
Introduction to time domain and free	equency domain design sp	becification and its			
physical relevance. Effect of gain on	transient and steady state	response. Effect of	Hours-10		
addition of pole on system perform	ance. Effect of addition	of zero on system			
response.					
Unit – 2: Design of Classical Contro	l System				
Introduction of compensator. Design	of Feedback and Feed forv	ward compensators,	Hours-00		
Feedback compensation. Compensat	or design in frequency d	omain to improve	110015-09		
steady state and transient response.					
Unit – 3: Design of PID controllers					
Design of P, PI, PD and PID controllers in time domain and frequency domain for					
Unit – 4: Control System Design in	state snace				
Review of state space representation	Concept of controllabilit	v & observability			
effect of pole zero cancellation on the	controllability & observab	ility of the system.	Hours-09		
pole placement design through state fe	edback.				
Unit – 5: Design of control for Non	Linear Systems				
Introduction, Methods of solving	Non-linear systems of eq	uations. Pseudo-	H 00		
composition, weight function procedu	are, Technique for extendir	ng scalar methods	Hours-09		
to the multidimensional case in a nontrivial way					
Course outcomes:					
On completion of the course student will be able to:					
1. Know the basic design in both time and frequency domain					
2. Understand the concepts of PID controllers					
3. Enhance the knowledge of design using state space					
4. Enumerate the basic concepts	s of nonlinearities and their	performance			
5. Understand the concepts of s	ingular points and performa	ance of system			
Text Books:					
1. N.Nise. "Control system Engineering". John Wiley					
2. I.J.Nagrath and M.Gopal, "Control system Engineering", Wiley.					
3. M.Gopal, "Digital Control E	ngineering", Wilev Eastern.				
4. K.Ogata, "Modern Control E	ngineering", Prentice Hall.				

- 1. B. C. Kuo, "Automatic Control system", Prentice Hall.
- 2. J. J. D'Azzo and C. H. Houpis, "Linear control system analysis and design (conventional and modern)", McGraw Hill.
- 3. R. T. Stefani and G. H. Hostetter, "Design of feedback Control Systems", Saunders College Pub.

DIGITAL CONTROL SYSTEMS				
Subject Code	21XXEEOM0XB	IA Marks	30	
Number of Lecture Hours/week	3L	Exam Marks	70	
Total Number of Lecture Hours	45	Exam Hours	03	
	Credits – 03			
Course Objectives:				
This course will enable student to :				
1. Obtain discrete representation	of LTI systems.			
2. Analyze and find the solutions	for discrete-time systems	S.		
3. Design and analyze digital cor	ntrollers.			
4. Design state feedback and out	put feedback controllers.			
5. Analyze the concepts of feedb	ack control and basic con	cepts of fast output sa	ampling	
Unit – 1: Discrete Representation of	Continuous Systems		Hours-10	
Basics of Digital Control Systems. Di	screte representation of c	continuous systems.		
Sample and hold circuit. Mathematical	Sample and hold circuit. Mathematical Modeling of sample and hold circuit. ZOH			
equivalent.				
Unit – 2: Discrete System Analysis				
Z-Transform and Inverse Z Transform	n for analyzing discrete t	ime systems. Pulse		
Transfer function. Pulse transfer function of closed loop systems. Mapping from s-				
plane to z plane. Time response of disc	rete time system.			
Unit – 3: Stability of Discrete Time S	ystem			
Stability analysis by Jury test. Stabi	lity analysis using bilin	ear transformation.		
Design of digital control system with de	ead beat response.		Hours-08	
State space models of discrete syst	ems, State space analys	sis. Controllability,		
Reachability, Reconstructability and ob	servability analysis.			
Unit – 4: Design of Digital Control Sy	ystem			
Design of discrete PID Controller, D	esign of discrete state f	eedback controller.	Hours-09	
Design of Discrete Observer, full order	and reduced order for LT	T System.		
Unit – 5: Discrete output feedback co	ontrol			
Design of discrete output feedback	control. Fast output sa	mpling (FOS) and	Hours-09	
Periodic output feedback controller des	ign for discrete time syste	ems.		
Course outcomes:	11 1 1 1 /			
On completion of the course student wi	II be able to:			
1. Know the basic of discrete rep	resentation of LTT system	1S.		
 Understand stability of open loop and closed loop discrete-time systems. Enhance the knowledge of design and analyze disited controllers. 				
5. Eminance the knowledge of design and analyze digital controllers.				
4. Enumerate the basic design of	state recuback and output	i leeudack controllers	s. Smanlin -	
5. Analyze the concepts of feedb	ack control and daste con	cepts of fast output sa	ampiing	

5. Analyze the concepts of feedback control and basic concepts of fast output sampling

Text Books:

- K.Ogata, "Digital Control Engineering", Prentice Hall, EnglewoodCliffs.
 B.C.Kuo, "DigitalControlSystem", Holt, RinehartandWinston..

- 1. G. F. Franklin, J. D. Powell and M. L. Workman, "Digital Control of Dynamic Systems", Addison-Wesley.
- 2. M.Gopal, "DigitalControlEngineering", WileyEastern.

INTELLIGENT CONTROL & ITS APPLICATIONS				
Subject Code	21XXEEOM0XC	IA Marks	30	
Number of Lecture Hours/week	3L	Exam Marks	70	
Total Number of Lecture Hours	45	Exam Hours	03	
	Credits – 03			
Course Objectives:				
This course will enable student to :				
1. Understand the basic intelligent con	troller concept			
2. Understand concepts of feed forward	d neural networks and lea	arning and understand	ling of	
feedback neural networks.				
3. Understand and analyze the concept	of genetic algorithm.			
4. Understand the knowledge of fuzzy	logic control.			
5. Apply the knowledge of fuzzy logic	control, genetic algorith	m and neural network	to the	
real problems.	ntrol			
Unit-1: Introduction to Intelligent Co	has to intelligent control	1 Anabitaatuma fan		
intelligent control Symbolic reason	ing system rule based	or Architecture for		
approach Knowledge representation	ing system, rule-based	systems, the Al	Hours 08	
Expert systems			110015 – 00	
Unit – 2. Artificial Neural Networks				
Concert of Artificial Neural Networks	ita hagia mathamatigal	model McCullesh		
Ditts neuron model simple percentr	, its basic mathematical	line Food forward		
Multilayer Perceptron Learning and	Training the neural net	work Introduction	Hours – 12	
derivation algorithm flowchart limit	itation-Error Back prop	agation Hopefield		
Radial bases function	Ration Error Back prop	agation, mopeneia,		
Unit – 3: Genetic Algorithm				
Basic concept of Genetic algorithm and	detail algorithmic steps.	adjustment of free		
parameters. Solution of typical control	problems using genetic a	lgorithm. Concept	Hours – 08	
on some other search techniques like ta	bu search and ant-colony	search techniques		
for solving optimization problems		-		
Unit – 4: Fuzzy Logic System				
Introduction to crisp sets and fuzzy sets	s, basic fuzzy set operation	on and approximate		
reasoning. Introduction to fuzzy log	gic modeling and con	trol. Fuzzification,		
inferencing and defuzzification. Fuzzy	knowledge and rule base	es. Fuzzy modeling	Hours – 08	
and control schemes for nonlinear syste	ems. Fuzzy logic control	for nonlinear time-		
delay system. Implementation of fuzzy	logic controller.			
Unit – 5: Applications				
Industrial applications to Genetic Als	gorithm. Neural Networ	k and Fuzzy Logic	II	
Control- case studies	, ,	, ,	Hours – 09	
Course outcomes:				
On completion of the course student will be :				
1. Able to identify knowledge representations applied to artificial intelligence techniques				
2. Able to model artificial neuron and identify its use in Perceptron models and back				
propagation algorithm to multilayer feed forward networks				
3. Able to analyze concept of genetic algorithm.				
4. Able to analyze fuzzy logic controller using MATLAB.				
5. Able to analyze various applications of neural and fuzzy logic systems in electrical				
Engineering		-, 10810 5,500115 111 (
Linginoering				

Text Books:

- 1. Simon Haykins, Neural Networks: A comprehensive Foundation, Pearson Edition.
- 2. T.J. Ross, Fuzzy logic with Fuzzy Applications, McGraw Hill Inc.
- 3. David E Goldberg, Genetic Algorithms. Wesley Publishing Company.
- 4. John Yen and Reza Langari, Fuzzy logic Intelligence, Control, and Information, PearsonEducation, Indian Edition.
- 5. Neural Network, Fuzzy Logic and Genetic Algorithm : Synthesis and Applications S. Rajasekaran and G. A. Vijayalakshmi Pai.

- 1. M.T. Hagan, H. B. Demuth and M. Beale, Neural Network Design, Indian reprint.
- 2. Fredric M. Ham and IvicaKostanic, Principles of Neuro computing for science andEngineering, McGraw Hill.
- 3. N. K. Bose and P. Liang, Neural Network Fundamentals with Graphs, Algorithms, and Applications, Mc, Graw Hill, Inc.
- 4. Yung C. Shin and ChengyingXu, Intelligent System, Modeling, Optimization and Control,CRC Press.
- 5. N. K. Sinha and Madan M Gupta, Soft computing & Intelligent Systems, Theory & Applications, Indian Edition, Elsevier.
- 6. WitoldPedrycz, Fuzzy Control and Fuzzy Systems, Overseas Press, Indian Edition.

DIGITAL SIGNAL PROCESSING				
Subject Code	21XXEEOM0XD	IA Marks	30	
Number of Lecture Hours/week	3L	Exam Marks	70	
Total Number of Lecture Hours	45	Exam Hours	03	
	Credits – 03			
 Course Objectives: This course will enable student to : 1. A good understanding of the fundamentals of discrete-time signals and systems. 2. Familiarity with techniques of analysis of discrete-time signals and the use of Z-transforms. 3. Knowledge of spectral properties of discrete-time systems through the use of Discrete Fourier transform (FFT) of sequences. 4. Skills in the design of digital filters. 5.Understanding of Applications of Digital Signal Processing 				
Unit-1: Discrete-time signals and s	systems			
Discrete time signals and systems: Sequences; representation of signals on orthogonal basis; Representation of discrete systems using difference equations, Sampling and reconstruction of signals - aliasing; Sampling theorem and Nyquist rate.				
Unit – 2: Z-transform				
z-Transform, Region of Converg systems using z- transform, Prop Interpretation of stability in z-domai	Hours –08			
Unit – 3: Discrete Fourier Transform Frequency Domain Analysis, Discrete Fourier Transform (DFT), Properties of DFT, Convolution of signals, Fast Fourier Transform Algorithm, Parseval's Identity, Implementation of Discrete Time Systems.			Hours –09	
Unit – 4: Design of Digital filters				
Design of FIR Digital filters: Window method, Park-McClellan's method. Design of IIR Digital Filters: Butterworth, Chebyshev and Elliptic Hours Approximations; Low-pass, Band-pass, Band- stop and High-pass filters. Effect of finite register length in FIR filter design.				
Unit – 5: Applications of Digital S	ignal Processing			
Correlation Functions and Power Sp using ARMA Model, Linear Mean-S Filter.	ectra, Stationary Processe Square Estimation, Wiene	es, Optimalfiltering er	Hours –08	
Course outcomes:				
On completion of the course student will be able to:				
1. Represent signals and systems mathematically discrete-time without aliasing				
 Analyse discrete-time systems using z-transform. Analyse discrete Equipart Transform (DET) and the EET algorithms. 				
4 Design digital filters for various applications				
5.Apply digital signal processing for	the analysis of real-life s	signals		
Text Books:

- 1. S.K.Mitra, "Digital Signal Processing: A computer based approach", Mc Graw Hill.
- 2. A.V.Oppenheim and R.W.Schafer, "Discrete Time Signal Processing", Prentice Hall.
- 3. J.G.Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algorithms And Applications", Prentice Hall.
- 4. L.R. Rabiner and B.Gold, "Theory and Application of Digital Signal Processing", Prentice Hall.

- 1. J. R.Johnson, "Introduction to Digital Signal Processing", PrenticeHall,.
- D.J.DeFatta ,J.G.Lucas and W.S.Hodgkiss," Digital Signal Processing", John Wiley & Sons.
- 3. Andreas Antoniou, "Digital Signal Processing", TATA McGraw Hill .
- 4. Robert J. Schilling, Sandra L. Harris, **"Fundamentals of Digital Signal Processing using Matlab"**, Thomson.

ELE(ELECTRICAL & HYBRID VEHICLES		
Subject Code	21XXEEOM0XE	IA Marks	30
Number of Lecture Hours/Week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits-03		
Course Objectives:			
This course will enable student to :			
1. Explain working of hybrid a	nd electric vehicles, its perform	ance and character	istics.
2. Discuss hybrid vehicle confi	guration and its components.		
5. Explain electric vehicle drive	e systems.		
5 Compare different Energy m	anagement strategies		
Unit 1. Introduction	lanagement strategies		
Conventional Vehicles: Basics of	vehicle performance vehicle	power source	
characterization transmission ch	aracteristics and mathematic	al models to	
describe vehicle performance.	and mathematics, and mathematic	an models to	Hours-8
Hybrid Electric Vehicles: History	of hybrid and electric vehic	les, social and	
environmental importance of hybrid	and electric vehicles.		
Unit 2: Hybrid Electric Drive Tra	ains		
Architecture of Hybrid Electric Ve	chicles (HEV), analysis of drive	e trains, energy	
use in conventional vehicles, ene	ergy saving potential of hybri	id drive trains,	
various HEV configurations and	their operation model. Power	flow in HEV:	Hours-
Power flow control in series, paralle	el, series-parallel hybrid system		10
Unit 3: Electric Drive Trains			
Architecture of electric drive train	, electric vehicle configuration	, electric drive	
trains, EV power source configurat	ions. Single and Multi-Motor of	lrives. In wheel	
drives, requirements of different	electric motors used in EVs.	Power-Torque-	Hours-7
Speed characteristics, electric propu	alsion systems.	I.	
Unit 4: Energy Storage	-		
Introduction to Energy Storage Re	equirements in Hybrid and Ele	ectric Vehicles,	
Battery based energy storage and it	s analysis, Fuel Cell based ene	rgy storage and	
its analysis, Super Capacitor base	ed energy storage and its ana	lysis, Flywheel	Hours-
based energy storage and its analy	vsis, Hybridization of different	energy storage	10
devices.	-		
Unit 5: Energy Management Stra	tegies		
Introduction to energy management	strategies used in hybrid and e	lectric vehicles,	
classification, comparison of	different energy manageme	ent strategies,	Hours-
implementation issues of energy	management strategies. Functi	ions of control	10
system in HEVs & EVs, Elemen	ntary control theory, Electroni	c control unit,	
control area network, control va	uriables, classifications of Hy	brid electronic	
control unit, fuzzy logic based control	rol system.		

On completion of the course student will be able to:

- 1. Illustrate the working of hybrid and electric vehicles, its performance and characteristics.
- 2. Analyze hybrid vehicle configuration and its components.
- 3. Discuss electric vehicle drive systems and Illustrate electric propulsion systems.
- 4. Infer the properties of energy storage systems.
- 5. Distinguish different energy management strategies.

Text Books:

- 1. C. Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons.
- 2. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer.

- 1. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press.
- 2. T. Denton, "Electric and Hybrid Vehicles", Routledge.

INDUSTRIA	AL ELECTRICAL SYST	EMS	
Subject Code	21XXEEOM0XF	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits – 03		I
Course Objectives:			
This course will enable student to :			
1. Understand the electrical wiri	ng systems components.		
2. Understand requirements for	industrial consumers and c	commercial system	lS.
3. Understand concepts in Illum	ination.		
4. Understand various compone	nts of industrial electrical	systems.	
5. Analyze and select the proper	size of various electrical	system components	5.
Unit-1: Electrical System Component	ts		
LT system wiring components, select	ion of cables, wires, swit	ches, distribution	
box, metering system, Tariff structu	are, protection componer	nts- Fuse, MCB,	
MCCB, ELCB, inverse current character	eristics, symbols, single lin	ne diagram (SLD)	Hours – 10
of a wiring system, Contactor, Isolator,	Relays, MPCB, Electric sl	hock and	
Electrical safety practices			
Unit – 2: Residential and Commercia	il Electrical Systems		
Types of residential and commercial w	fing systems, general rul	es and guidennes	
distribution board and protoction	devices conthing such	of main switch,	Hours 10
requirements of commercial installation	n deciding lighting schen	and number of	110015 – 10
lamps	n, deciding fighting selien		
Unit – 3: Illumination Systems			
Understanding various terms regarding	light, lumen, intensity, ca	ndle power, lamp	
efficiency, specific consumption, glare	e, space to height ratio, v	vaste light factor.	
depreciation factor, various illuminatio	n schemes, Incandescent l	amps and modern	H 00
luminaries like CFL, LED and their	operation, energy saving	g in illumination	Hours – 08
systems.		-	
Unit – 4: Industrial Electrical System	ıs-I		
HT connection, industrial substation, T	ransformer selection, Indu	strial loads,	
motors, starting of motors, SLD, Cable	and Switchgear selection,	Lightning	Hours - 10
Protection, Earthing design, Power factor	tor correction – kVAR cal	culations, type of	110015 - 10
compensation, Introduction to PCC, M	ICC panels. Specifications	s of LT Breakers,	
MCB and other LT panel components.			
Unit – 5: Industrial Electrical System	IS-II		
DG Systems, UPS System, Electrical S	ystems for the elevators, B	attery banks,	Hours – 07
Sizing the DG, UPS and Battery Banks	, Selection of UPS and Bat	ttery Banks.	
Course outcomes:	11 1 1 /		
On completion of the course student wi	II be able to:		
1. Acquire Knowledge on Lariff st	ructure and protection con	nponents.	
2. Understand various types withing	g systems and IE fules.		
A Understand various types of each	ology. Jes		
5. Acquire Knowledge on UPS sys	stems.		

Text Books:

- 1. S. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khannapublishers.
- K. B. Raina, "Electrical Design, Estimating & Costing", New age International.
 S. Singh and R. D. Singh, "Electrical estimating and costing", DhanpatRai
- 3. S. Singh and R. D. Singh, "Electrical estimating and costing", DhanpatRai and Co., 1997.

- 1. Web site for ISStandards.
- 2. H. Joshi, "Residential Commercial and Industrial Systems", McGraw Hill Education.

ELECTRICAL MATERIALS				
Subject Code	21XXEEOM0XG	IA Marks	30	
Number of Lecture Hours/week	3L	Exam Marks	70	
Total Number of Lecture Hours	45	Exam Hours	03	
	Credits – 03			
Course Objectives:				
This course will enable student to :				
1. Understand the formation and	l properties of conducting	material.		
2. Understand the formation and	l properties of Semiconduc	tor Materials.		
3. Understand the formation and	properties of Dielectric M	aterials.		
4. Understand the formation and	properties of Magnetic Ma	aterials.		
5. Understand the formation and	properties of Special Purp	ose Materials.		
Unit-1: Conducting Materials:				
Review of metallic conduction on the	basis of free electron the	ory. Fermi-Dirac		
distribution - variation of conducti	vity with temperature a	nd composition,		
materials for electric resistors- general	electric properties; mater	ial for brushes of	Hours - 1	n
electrical machines, lamp filaments, fus	ses and solder.		110015 - 1	U
Unit – 2: Semiconductor Materials:				ļ
Mechanism of conduction in semico	onductors, density of car	riers in intrinsic		
semiconductors, the energy gap, types	of semiconductors. Hall	effect, compound	Hours – 08	8
semiconductors, basic ideas of amorphe	ous and organic semicond	uctors.		
Unit – 3: Dielectric Materials:				ļ
Dielectric as Electric Field Medium,	leakage currents, dielectr	ic loss, dielectric		
strength, breakdown voltage, brea	kdown in solid dielec	trics, flashover,	Hours – 1	0
liquid dielectrics, electric conductivity	in solid, liquid and ga	seous dielectrics,		
Ferromagnetic materials, properties of	f ferromagnetic materials	in static fields,		
spontaneous, polarization, curie point,	anti-ferromagnetic mater	ials, piezoelectric		
materials, pyro electric materials.				
Unit – 4: Magnetic Materials:				
Classification of magnetic materials, s	pontaneous magnetization	in ferromagnetic		_
materials, magnetic Anisotropy	y, Magnetostriction,	diamagnetism,	Hours -0°	7
magnetically soft and hard materials,	special purpose materials,	feebly magnetic		
materials, Ferrites, cast and cermet	permanent magnets, age	ing of magnets.		
Factors effecting permeability and hyst	eresis			
Unit – 5: Materials for Electrical Applic	cations:			
Materials used for Resistors, rheost	ats, heaters, transmission	line structures,		
stranded conductors, bimetals fuses,	, soft and hard solders	, electric contact	Hours - 1	0
materials, electric carbon materials, t	hermocouple materials.	Solid, Liquid and	110015 - 1	U
Gaseous insulating materials, Effect of	moisture on insulation.			

On completion of the course student will be able to:

- 1. Summarize the properties of conducting materials.
- 2. Identify materials used in semiconductor applications
- 3. Define the terms breakdown voltage
- 4. Classify of magnetic materials.
- 5. Identify material suitable for different electrical applications.

Text Books:

- 1. R K Rajput", "A course in Electrical Engineering Materials", Laxmi Publications.
- 2. "T K Basak", "A course in Electrical Engineering Materials", New Age

Science Publications.

- 1. TTTI Madras, "Electrical Engineering Materials", McGraw Hill Education.
- 2. "AdrianusJ.Dekker", Electrical Engineering Materials, PHI Publication.
- 3. S. P. Seth, P. V. Gupta "A course in Electrical Engineering Materials", Dhanpat Rai
 - & Sons.

OPTIMIZATION TECHNIQUES			
Subject Code	21XXEEOM0XH	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits -03		
Course Objectives:			
This course will enable student to :			
1. To define an objective function	n and constraint functions i	n terms of design v	ariables,
and then state the optimization	ı problem.		
2. To state single variable and m	ulti variable optimization p	roblems, without ar	nd with
constraints.			
3. To explain linear programming	g technique to an optimizat	ion problem, define	slack and
surplus variables, by using Sin	nplex method.		
4. To study and explain nonlinea	r programming techniques,	unconstrained or co	onstrained,
and define exterior and interior	r penalty functions for opti	mization problems.	
5. To introduce evolutionary prog	gramming techniques.		
Unit-1: Introduction and Classical O	ptimization Techniques:		
Statement of an Optimization problem,	design vector, design con	straints, constraint	Hours 08
surface, objective function, object	ive function surfaces,	classification of	110015 - 00
Optimization problems.			
Unit – 2: Classical Optimization Tech	nniques		
Single variable Optimization, multi	variable Optimization wi	thout constraints,	II 00
necessary and sufficient condition	s for minimum/maximu	m, multivariable	Hours – 08
Optimization with equality constraints.	Solution by method of Lag	grange multipliers,	
multivariable Optimization with inequa	ality constraints, Kuhn, Tu	icker conditions.	
Unit – 3: Linear Programming		· · · · ·	
Standard form of a linear programming	g problem, geometry of li	near programming	II 00
problems, definitions and theorems, s	olution of a system of li	near simultaneous	Hours – 08
equations, pivotal reduction of a gene	eral system of equations,	motivation to the	
simplex method, simplex algorithm, D	uality in Linear Programm	ing, Dual Simplex	
method.			
Unit – 4: Nonlinear Programming:			
Unconstrained cases, One, dimensio	nal minimization method	ls: Classification,	
Fibonacci method and Quadratic interp	olation method, Univariate	method, Powell's	Hours – 08
method and steepest descent method	d. Constrained cases, Ch	aracteristics of a	
constrained problem, Classification, B	asic approach of Penalty	Function method;	
Basic approaches of Interior and Exteri	or penalty function metho	ds. Introduction to	

convex Programming Problem.

Unit – 5: Introduction to Evolutionary Methods:	
Evolutionary programming methods, Introduction to Genetic Algorithms (GA)-	
Control parameters, Number of generation, population size, selection, reproduction,	
crossover and mutation, Operator selection criteria, Simple mapping of objective	Hours – 13
function to fitness function, constraints, Genetic algorithm steps,	
Stopping criteria –Simple examples.	
Course outcomes:	
On completion of the course student will be able to:	
1. State and formulate the optimization problem, without and with constraints, by usir	ng design
variables from an engineering design problem.	
2. Apply classical optimization techniques to minimize or maximize a multi-variable	objective
function, without or with constraints, and arrive at an optimal solution.	
3. Formulate a mathematical model and apply linear programming technique by using	g Simplex
method. Also extend the concept of dual Simplex method for optimal solutions.	
4. Apply gradient and non-gradient methods to nonlinear optimization problems and u	use
interior or exterior penalty functions for the constraints to derive the optimal solution	ons.
5. Able to apply Genetic algorithms for simple electrical problems.	
Text Books:	
1. "Engineering optimization: Theory and practice"-by S. S.Rao, New Age Internation	nal (P)
Limited, 3rd edition.	
2. Soft Computing with Matlab Programming by N.P.Padhy&S.P.Simson, Oxford Un	iversity

Press .

- 1. "Optimization methods in operations Research and Systems Analysis" by K.V.Mital and C.Mohan, New Age International (P) Limited, Publishers, 3rd edition, .
- 2. Genetic Algorithms in search, optimization, and Machine Learning by David E.Goldberg,ISBN:978-81-7758-829-3, Pearsonby Dorling Kindersley (India) Pvt. Ltd.
- 3. "Operations Research: An Introduction" by H.A.Taha, PHI pvt. Ltd., 6th edition.
- 4. Linear Programming by G.Hadley..

WIND AND SOLA	AR ENERGY SYSTEMS	5	
Subject Code	21XXEEOM0XI	IA Marks	30
Number of Lecture Hours/Week	3L	Exam Mark	is 70
Total Number of Lecture Hours	45	Exam Hour	s 03
	Credits-03		
COURSE OBJECTIVES:			
This course will enable students :			
1. To understand the energy scenario a	nd the consequent growth	n of the power	generation
from renewable energy sources.			
2. To understand the basic physics of v	wind and solar power gene	eration.	
3. To understand the power electronic	interfaces for wind and so	olar generation	1.
4. To understand the issues related to t	he grid-integration of sola	ar and wind er	nergy
systems.			
5. To understand the basic MPPT tech	niques of wind and solar	power generat	ion.
Unit -1: Physics of Wind Power:			
History of wind power, Indian and Global s	statistics, Wind physics, E	Betz limit,	Hours-9
Tip speed ratio, stall and pitch control, Wir	nd speed statistics-probabi	ility	
distributions, Wind speed and power-cumu	lative distribution functio	ns.	
Unit -2: The Solar Resource			
Introduction, solar radiation spectra, solar g	geometry, Earth Sun angle	es, observer	Hours-10
Sun angles, solar day length, Estimation of	solar energy availability.		
Unit – 3: Solar Cell Technologies			-
Amorphous, mono crystalline, polycrystall	ine Solar cells & panels,	performance	Hours-08
of solar cell, estimation of power obtain fro	m solar power.		
Unit – 4: Solar photovoltaic			
Solar panels PV systems, components of P	V systems, performance o	of PV	
systems, concentrating PV systems, PV pov	wer plants, V-I characteri	stics of a PV	Hours-10
cell, PV module, array			
Unit – 5: Maximum Power Point Trackin	ng		
Maximum Power Point Tracking (MPPT) a	lgorithms. Converter Cor	ntrol, design	Hours-8
of PV systems, applications of PV systems		<i>, C</i>	
Course Outcomes:			
1. Understand the energy scenario and the o	consequent growth of the	power genera	tion from
renewable energy sources.			
2. Understand the basic physics of wind and	d solar power generation.		
3. Design the power electronics to interface	e for wind and solar gener	ation.	
4. Understand the issues related to the grid-	integration of solar and w	vind energy sy	stems.

5. Design solar system with different types of solar PV panels & MPPT algorithms

TEXT BOOKS:

- **1.** T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd.
- 2. Renewable Energy Resources, John Twidell and Tony Weir, Taylor and Francis second edition.

REFERENCES:

- 1. H. Siegfried and R. Waddington, "Grid integration of wind energy conversion systems" John Wiley and Sons Ltd.,
- 2. Renewable Energy- Edited by Godfrey Boyle-oxford university.press,3rd edition..
- 3. Handbook of renewable technology Ahmed and Zobaa, Ramesh C Bansal, World scientific, Singapore.
- 4. Renewable Energy Technologies /Ramesh & Kumar /Narosa.
- 5. Renewable energy technologies A practical guide for beginners Chetong Singh Solanki, PHI. Non conventional energy source –B.H.khan- TMH-2nd edition.

Honors (for EEE Students)

III B. Tech I Semester:

S. No	Subject code	Name of the Subject
1	21EEEEH511A	Electrical Machine Design
2	21EEEEH511B	Utilization of Electrical Energy & Traction
3	21EEEEH511C	Solar & Advanced Energy Storage System
4	21EEEEH511D	Modern Control Systems

ELECTRICAL MACHINE DESIGN SEMESTER-V			
Subject Code	21EEEEH511A	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits – 04		
Course Objectives:			
The objectives of this course is to ac	nuire knowledge on the		
1. Properties of magnetic materials	and the operation of PM	DC motors.	
2. Performance and control of stepp	per motors and their appl	ications.	
3. Theory of operation and control of	of switched reluctance m	notor.	
4. Characteristics and performance	of PM BLDC motors.		
5. Principle of operation of linear in	nduction motor		
Unit-1: Fundamental Aspects of El	lectrical Machine Desig	gn	
 Fundamental Aspects of Electrical Factors, Limitations in design, Techniques. Electrical Engineering Materials: Comparison of Aluminium and O Magnetic materials – Solid Core M Grain Oriented Steel. Insulating Ma and Insulating Materials, Classifical Consideration 	Machine Design: Desi Modern Trends in Desirable properties of Copper wires. Ferroma aterials, Electrical Sheet aterials: Desirable Prope tion of Insulating mate	gn of Machines, Design design, manufacturing f Conducting Materials agnetic Materials: Soft and Strip, Cold Rolled erties, Temperature Rise rials based on Thermal	Hours – 08
Consideration.			
Output Equation, Choice of Specif Main Dimensions of armature, Des and Brushes. Estimation of Ampere Yoke, Main Pole and Air Gap. Desig	ic Loadings and Choic ign of Armature Slot D Turns for the Magnetic gn of Shunt and Series F	e of Number of Poles imensions, Commutator Circuit. Dimensions of ield Windings.	Hours – 08
Unit – 3: Design of Transformers			
Output Equations of Single Phase Specific Loadings, Expression for V of the Core, Estimation of Number of Primary and Secondary Windings, Reactance of core type transformer Regulation. Design of Tank and Coo	e and Three Phase Tr Volts/Turn, Determination of Turns and Conductor No Load Current. Expr with concentric coils, an oling (Round and Rectan	ansformers, Choice of on of Main Dimensions Cross Sectional area of ression for the Leakage d calculation of Voltage gular) Tubes.	Hours –12
Unit – 4: Design of Three Phase In	duction Motors		
Output Equation, Choice of Specific of stator slots and Winding, Choice Slots for Squirrel Cage Rotor. Desig Ring rotor. Estimation of No Load C	c Loadings, Main Dimer e of Length Air Gap, E gn of Rotor Bars and E Current and Leakage Rea	nsions of Stator. Design stimation of Number of nd Ring. Design of Slip actance.	Hours –09
Unit – 5: Design of Three Phase Sy	nchronous Machines		
Output Equation, Choice of Sp Dimensions of Stator. Design of st non- salient Pole Rotors. Magnetic C	ecific Loadings, Short ator slots and Winding Fircuit and Field Winding	Circuit Ratio, Mair Design of Salient and g.	Hours -08
Course Outcomes:			
 The students should be able to: Identify and list, limitations and p Design the field windings and roto Discuss selection of specific load and leakage reactance of core type Discuss selection of specific load 	roperties of materials us or circuits of DC machin lings and Estimate num e transformer. dings and magnetic cir	ed in the electrical mache the ber of cooling tubes, no cuits of induction mot	nines. o load current or and design

stator and rotor circuits of a induction motor.

5. Design the field windings of salient pole and non-salient pole alternators for given specifications.

Text Books:

1. A course in Electrical Machine design A. K. Sawhney Dhanpat Rai 6th Edition.

- 1. Performance and Design of Alternating Current Machines M.G. Say CBS Publisher 3rd Edition,
- 2. Design Data Handbook A. Sanmugasundaram Et. al New Age International 1st Edition.

UTILIZATION OF ELECTRICAL ENERGY & TRACTION			
California (California)	SEMESTER-V	TA Maulas	20
Subject Code	ZIEEEEH5IIB	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits – 04		
Course Objectives: This course will enable student to :			(h
types lighting systems.	mination and its measurem	ients and to design	
2. Understand the operating principl speed, temperature and loading con	les and characteristics of nditions.	various motors wit	h respect to
3. Acquaint with the different types of	of heating and welding tech	nniques.	
4. Understand the basic principles of	electric traction including	g speed-time curves	of different
traction services			
5. Calculation of braking, acceleratio	n and other related parame	eters.	
Unit-1: Illumination			
Choice of motor, type of electric dri loads–continuous–Intermittent and var to energy efficient motors.	ves, Temperature rise, T iable loads–Load equaliza	ypes of industrial ation, Introduction	Hours –10
Unit – 2: Selection of Motors			
Introduction, terms used in illuminati	on-Laws of illumination-	-Sources of light.	
Discharge lamps, MV and SV lamps	- Comparison between	tungsten filament	Hours – 08
lamps and fluorescent tubes–Basic prin	ciples of light control– Ty	ypes and design of	
lighting and flood lighting–LED lightin	lg		
Unit – 3: Electric Heating & Electric	Welding		
Advantages and methods of electric he	eating–Resistance heating,	induction heating	
and dielectric heating.	a walding Elastria wal	ding aquinmont	Hours –08
Comparison between AC and DC Weld	ling	ung equipment-	
Ut the	inig		
Unit – 4 Electric Treation			
System of electric traction and track	alastrification Pavian o	f ovisting alastria	
traction systems in India Special fast	ures of traction motor N	Acchanics of train	Hours –10
movement_Speed_time_curves_for	different services –	Trapezoidal and	
quadrilateral speed time curves	different services	Trapezoidar and	
$\frac{1}{1}$			
Electric Traction – II			
Calculations of tractive effort– power –	-Specific energy consumpt	tion for given run-	TT 00
Factors affecting the specific energy	consumption. Dead we	ight, Accelerating	Hours –09
weight, adhesive weight and coefficie	ent of adhesion. Requirem	nents of a braking	
system, Types of braking, Principles of	energy efficient motors.	C	

On completion of the course student will be able to:

- 1. Understand various levels of illuminosity produced by different illuminating sources design different lighting systems by taking inputs and constraints in view.
- 2. Identify a suitable motor for electric drives and industrial applications
- 3. Identify most appropriate heating and for suitable applications.
- 4. Identify most appropriate welding techniques for suitable applications.
- 5. Determine the speed/time characteristics of different types of traction systems

Text Books:

- 1. Utilization of Electric Energy by E. Openshaw Taylor, Orient Longman.
- 2. Art & Science of Utilization of electrical Energy by Partab, DhanpatRai&Sons.
- 3. "Thermal energy storage systems and applications"-by Ibrahim Dincer and Mark A.Rosen. John Wiley and Sons.

- 1. Utilization of Electrical Power including Electric drives and Electric traction by N.V.Suryanarayana, New Age International (P) Limited, Publishers.
- 2. Generation, Distribution and Utilization of electrical Energy by C.L. Wadhwa, New Age International(P)Limited,Publishers.

ENERGY	STORAGE SYSTEM EMESTER-V		
Subject Code	21EEEEH511C	IA Marks	30
Number of Lecture Hours/Week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits-04		
COURSE OBJECTIVES:			
This course will enable students :			
1. Solar radiation data, extraterrestrial ra	diation, radiation on earth's	s surface	
2. Maximum power point techniques in	solar PV		
3. Need of energy storage and different t	types of energy storage. the	rmal, magnetic, electric	cal and
4 Emerging peods for EES pertaining to	ems Donouvoblo onorgy		
4. Emerging needs for EES pertaining to 5. Types of electrical energy storage sys	tems & design and Applicat	ions of Flactrical Energy	787
Storage	temsæ design and Applicat	ions of Electrical Elers	зy
Unit -1: Fundamentals of Energy System	ns		
Energy conservation principle. Energy scenar	io (world and India). Solar	radiation: Outside	
earth's atmosphere. Earth surface – Analysis	of solar radiation data – Ge	ometry – Radiation	Hours-7
on tilted surface, Numerical problems			
Unit -2: Solar Thermal Systems& Solar	Photovoltaic Systems		
Solar Thermal Systems:			
Liquid flat plate collections: Performa	nce analysis, Transmiss	ivity, Absorptivity,	
Product collector efficiency factor, C	collector heat removal	factor, Numerical	
problems, Introduction to solar air heaters	, Concentrating collector	s and solar pond.	Hours-
Solar Photovoltaic Systems:			10
Balance of systems, I-V & P-V charact	eristics, System design,	Storage sizing, PV	
system sizing, Maximum power point	techniques, Perturb a	nd observe (P&O)	
technique, Incremental Conductance (INC), Hill climbing techniqu	ie	
Unit – 3: Introduction To Energy Stora	ge Systems	1 * 1 1 * 1	_
Necessity of energy storage, different typ	bes of energy storage, me	echanical, chemical,	
electrical, electrochemical, biologica	i, magnetic, electron	hagnetic, thermal,	TT
Noods for Electrical Energy Storage:	28		Hours-
Emerging needs for EES. More renewab	le energy less fossil fuel	Smart Grid uses	10
the roles of electrical energy storage tech	hnologies-the roles from	the viewpoint of a	
utility-the roles from the viewpoint of	consumers-the roles from	n the viewpoint of d	
generators of renewable energy	consumers the roles not	in the viewpoint of	
Unit – 4: Energy Storage Systems:			
Thermal Energy storage-sensible and late	nt heat, phase change ma	terials. Energy and	
energy analysis of thermal energy storage	, Electrical Energy storag	e-super-capacitors,	
Magnetic Energy storage-Superconductin	g systems, Mechanical-P	umped hydro,	Hours-
flywheels and pressurized air energy stora	age, Chemical-Hydrogen	production and	08
storage, Principle of direct energy converse	sion using fuel cells, ther	modynamics of fuel	
cells, Types of fuel cells, Fuel cell perform	nance, Electrochemical E	Energy Storage-	
Battery, primary, secondary and flow batt	eries.		

Unit – 5: Types, Design and Applications of Electrical Energy Storage systems	
Types of Electrical Energy Storage systems:	
Electrical storage systems, Double-layer capacitors (DLC), Superconducting	
magnetic energy storage (SMES), super charging stations, Thermal storage systems,	
Standards for EES, Technical comparison of EES technologies.	
Design and Applications of Electrical Energy Storage:	Hours-
Renewable energy storage-Battery sizing and stand-alone applications, stationary	10
(Power Grid application), Small scale application-Portable storage systems and	
medical devices, Mobile storage Applications- Electric vehicles (EVs), types of EVs,	
batteries and fuel cells, future technologies, hybrid systems for energy storage	
COURSE OUTCOMES:	
On completion of the course student will be able to:	
1. Analyze solar radiation data, extraterrestrial radiation, radiation on earth's surface.	
2. develop maximum power point techniques in solar PV	
3. know the characteristics of electricity and need for continuous and flexible supply,	discuss
about the role of electrical energy storage technologies	
4. analyze features of EES systems	
5. Acquire knowledge on various types of EES systems, apply EES systems to various	S
applications such as smart micro grid, smart home etc.	
TEXTBOOKS:	
1. 1. Solar Energy: Principles of Thermal Collection and Storage, S. P. Sukhatme and J. TMH, New Delhi, 3rd Edition	K. Nayak,
2. Renewable Energy Resources, John Twidell and Tony Weir, Taylor and Francis Electronics Engineering 163	ctrical and
3. Energy Science: Principles, Technologies and Impacts, John Andrews and Nick Jelly, Oxfor	rd.
4. Energy Storage - Technologies and Applications by Ahmed Faheem Zobaa, InTech.	
5. Fundamentals of Energy Storage by J. Jensen and B. Sorenson, Wiley-Interscience, New Yo	ork
6. Energy Storage: Fundamentals, Materials and Applications, by Huggins R. A., Springer.	
REFERENCE DOURS: D1 Handbook of renovable technology Ahmed and Zohoa, Demash C Dangel World so	ontific
Singapore	entine,
R2 Renewable Energy Technologies /Ramesh & Kumar /Narosa	
D2: Danawahla anargy technologies A practical guide for baginners. Chatena Singh S	olonki
PHI.	olaliki,
R4: Thermal energy storage: Systems and Applications by Dincer I. and Rosen M. A., W pub.	Viley
R5: Energy Storage: Fundamentals, Materials and Applications, by Huggins R. A., Sprir	nger.

R6: Electric & Hybrid Vehicles by G. Pistoia, Elsevier B. V. iv. Fuel cell Fundamentals by R. O'Hayre, S. Cha, W. Colella and F. B. Prinz, Wiley Pub.

MODERN CONTROL SYSTEMS SEMESTER-V			
Subject Code	21EEEEH511D	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits – 04		<u> </u>
Course Objectives:			
This course will be able student to unde	erstand:		
1. Review of the state space represe	entation of a control syste	m: Formulation of di	fferent
models from the signal flow grap	ph, diagonalization.		
 To introduce the concept of cont technique. 	rollability and observabili	ity. Design by pole pl	acement
3. Analysis of a nonlinear system u	sing Describing function	approach and Phase	olane
analysis.	0		
4. The Lypanov's method of stabili	ity analysis of a system. F	ormulation of Euler I	Laugrange
equation for the optimization of	typical functional and solu	utions.	
5. Formulation of linear quadratic of	optimal regulator (LQR) p	oroblem by parameter	
adjustment and solving riccatti e	quation		
Unit-1: State space analysis			
Introduction, Concept of State, State	Variables and State M	Model, State Space	H 00
Representation – Solution of state equ	ation – State transition 1	natrix, – Canonical	Hours – 08
forms – Controllable canonical form – C	Observable canonical form	1.	
Unit – 2: Controllability, observability	y		_
Tests for controllability and observat	oility for continuous tim	ne systems – Time	
varying case – Minimum energy contro	l – Time invariant case –	Principle of duality	Hours – 12
- Controllability and observability form	n Jordan canonical form	and other canonical	1100115 12
forms – Effect of state feedback on cont	rollability and observability	ity.	
Unit – 3: Describing function analysis	& Stability analysis		-
Introduction to nonlinear systems, Typ	es of nonlinearities, desc	ribing functions,	
Introduction to phase–plane analysis.			Hours – 12
Stability in the sense of Lyapunov – Lyapun	yapunov's stability and L	ypanov's instability	
theorems – Direct method of Lyapunov	for the linear and nonlin	ear continuous time	
autonomous systems.			
Unit – 4: Calculus of variations			-
Minimization of functional of single	e function – Constrain	ed minimization –	II. O
Minimum principle – Control variable	e inequality constraints -	- Control and state	Hours – 8
variable inequality constraints – Euler la	igrangine equation.		

Unit – 5: Optimal control	
	Hours – 8
Various cost functions, Regulatory problems, Linear and Quadratic regulators	
Course outcomes:	
On completion of the course student will be able to:	
1. Review of the state space representation of a control system: Formulation of diffe	erent
models from the signal flow graph, diagonalization.	
2. To introduce the concept of controllability and observability. Design by pole	
placement technique.	
3. Analysis of a nonlinear system using Describing function approach and Phase pla analysis.	ne
4. The Lypanov's method of stability analysis of a system. Formulation of Euler	
Laugrange equation for the optimization of typical functional and solutions.	
5. Formulation of linear quadratic optimal regulator (LOR) problem by parameter	
adjustment and solving riccatti equation	
Text Books:	
1. Modern Control Engineering – by K. Ogata, Prentice Hall of India, 3rd edition.	
2. Automatic Control Systems by B.C. Kuo, Prentice Hall PublicationS. Onori,	
3. L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strat	egies",
Springer.	
Reference Books:	
1. Modern Control System Theory – by M. Gopal, New Age International Publishe	ers, 2nd
2 Control Systems Engineering by LL Negarath and M Conel New Age Internetic	(\mathbf{D})
2. Control Systems Engineering by 1.J. Nagarath and M.Oopai, New Age Internation	filal (1)
Liu. 2 Digital Control and State Variable Matheda by M. Conal. Tate McGray, Hill	
Companies.	
4. Systems and Control by Stainslaw H. Zak, Oxford Press.	
5. Optimal control theory: an Introduction by Donald E. Kirk by Dover publications	S

Minors to other Departments

III B. Tech I Semester:

S. No	Subject code	Name of the Subject		
1	21XXEEM511A	Fundamentals of Electrical Machines		
2	21XXEEM511B	Fundamentals of Power Electronics		
3	21XXEEM511C	Electrical Measurements & Instrumentation		

FUNDAMENT M	ALS OF ELECTR IACHINES	ICAL	
SI	EMESTER-V		
Subject Code	21XXEEM511A	IA Marks	30
Number of Lecture Hours/ week	3L	Exam Marks	70
Total Number of Lecture Hours	Credite 04	Exam Hours	03
COURSE OBJECTIVES:	CICUITS-04		
I his course will enable students :			• .• .
1. The principle of operation and construct	ction of DC generators an	d DC motors, character	istics of
DC generators.			
2. Speed control methods, starting and pe	A C manufactor characteristics	of DC shunt motor	12
3. Principle of operation, construction of a	AC machines (transforme	ers, synchronous machin	nesand 3-
A Deformed of shorestoristics of transfor	man 6 2 mbass Industion		- f
4. Performance characteristics of transfor	mers & 3-phase induction	n motors and regulation	01
transformer and alternators			
UNIT – 1: DC Generators			
Principle of operation of DC generator $-E$	MF equation – types of	DC machines –	_
OCC & load characteristics of DC generate	or s		Hours-
	J 5.		10
UNIT – 2: DC Motors			
Principle of operation of DC motor - torque	e equation - speed cont	rol methods – losses	Hours
and efficiency – three point starter - application	ations – Swinburne's te	est - brake test -	Hours-
numerical problems.			10
UNIT – 3: Transformers			
Principle of operation and construction of s	single phase transforme	er – EMF equation –	
Losses - OC & SC tests - efficiency and vo	ltage regulation of tran	sformer –	Hours-
Numerical Problems.			08
UNIT-4: Three-Phase Induction Motors	5		
Principle of operation – construction – revo	olving magnetic field -	types of three-phase	
induction motors – slip-torque characteristi	cs - maximum. starting	and running toques	TT
- losses and efficiency - starting methods		,	Hours-
			07
UNIT-5: Single Phase Induction Motors	1		Hound
Principle of operation – construction – revo	olving magnetic field –	starting methods of	nours-
single-phase induction motors – Equivalen	t circuit-slip-torque cha	tracteristics.	10
On completion of the course student will be	abla to:		
Understand the operation and characteristic	cs of DC generators		
2. Understand the operation and characteristic	cs of DC motors.		
3. Understand the operation of single phase the	ransformers.		
4. Understand the principle, speed-torque cha	aracteristics, performance	and starting methods o	f 3-
phase induction motor			
5. Understand the operation single phase indu	iction motor.		

TEXT BOOKS:

- 1. Principles of Electrical Machines by V.K. Mehta & Rohit Mehta, S.Chand publications
- 2. Theory & performance of Electrical Machines by J.B.Guptha, S.K.Kataria & Sons
- 3. Electrical Machinery by P.S. Bhimbra, Khanna Publishers.

REFERENCE BOOKS:

- 1. Basic Electrical Engineering by M.S.Naidu & S.Kamakshiah, TMH Publications
- 2. Fundamentals of Electrical Engineering by Rajendra Prasad, PHI Publications, 2nd edition
- 3. Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2nd edition

FUNDAMENTA	LS OF POWER ELE SEMESTER-V	CTRONICS	
Subject Code	21XXEEM511B	IA Marks	30
Number of Lecture Hours/Week	<u>3L</u>	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits-04		1
COURSE OBJECTIVES:			
This course will enable students :			
1. To understand the working of po	ower electronic devices.		
2. To study the different turn on an	d turn off methods of S	CR.	
3. To understand how to controlled	the output voltage of c	ontrolled rectifiers.	
4. To understand the operation of c	hopper and inverter circ	cuits.	
5. To understand the importance of	power electronics for i	ndustrial applications.	
Unit -1: Thyristor Family Devices:			
V-I Characteristics of SCR, Calculation	of latching current (IL)	, Holding current (I _H)	Hours-10
and anode current of the SCR, V-I char	acteristics of MOSFET	, IGBT GTO, DIAC	
and TRIAC.			
Unit -2: Turn ON and Turn OFF met	thods of SCR:		Hours-10
Concept of turn ON mechanism of	SCR, SCR trigger	ing methods, UJT	
triggering, protection circuits of SCR fr	om high voltage and high	gh current.	
Unit – 3: Phase Controlled Rectifier	s:		
Phase controlled parameters, single	phase half controlled 1	ectifier working and	
operation for R and RL loads effect of	of free- wheeling diode	, single phase center	Hours-08
tapped full wave controlled rectifier wo	rking and waveforms v	with R and RL loads.	
Unit – 4: Choppers and Inverters:		MOGEET	Hours-07
Working of chopper circuit and classifie	cation of choppers using	g power MOSFET,	iiouis or
Inverters: circuit diagram working of se	ries and parallel inverte	r.	
Unit – 5: Industrial Applications of p	ower electronic Device	S:	
Light dimmer circuit using DIAC	and TRIAC, battery	charger using SCR,	Hours-10
Temperature control using SCR, Block	diagram and concept of	UPS, Block diagram	
and concept of SMPS			
COURSE OUTCOMES:			
On completion of the course student will	Il be able to:		
1. Analyze when the power electronic	devices will come into	turn ON condition.	
2. Analyze triggering circuit which is	suitable to turn ON or to	Irn OFF the SCR.	
3. Analyze the operation of type of the	e converter.		
4. Analyze the operation of chopper at	t and its operation		
J. Anaryze the unterent control circul			

TEXT BOOKS:

- 1. M. E. Van Valkenburg, "Network Analysis", Prentice Hall, Third edition.
- 2. D.Roy Choudhury, "Networks and Systems", New Age International Publications..

3. W. H. Hayt and J. E. Kemmerly, "Engineering Circuit Analysis", McGraw Hill Education.

REFERENCE BOOKS:

1. Thyristorised Power Controllers – by G. K. Dubey, S. R. Doradla, A. Joshi and R. M. K.Sinha, New Age International (P) Limited Publishers.

2. Power Electronics handbook by Muhammad H.Rashid, Elsevier.

3. Power Electronics: converters, applications & design -by Nedmohan, Tore M. Undeland, Robbins by Wiley India Pvt. Ltd.

4. Power Converter Circuits -by William Shepherd, Li zhang, CRC Taylor & Francis Group.

ELECTRICAL ME	ASUREMENTS AND INS	STRUMENTATIO	N
Subject Code	21XXEEM511C	IA Marks	30
Number of Lecture	<u>3L</u>	Exam Marks	70
Hours/Week			
Total Number of Lecture	45	Exam Hours	03
Hours			
	Credits-04		
Objectives:			
This course will enable student to):		
1. Understand the PMMC a	nd mi meters and instrumen	t transformers.	
2. Understand the working	principle & operation of dif	ferent types of pow	er & energy
meters.			
3. Understand the physical	parameters such as R, L, C	and explain the wor	king principle
& operation of potention	leters.		
4. Understand the performa	nce of various transducers.		
5. Understand the use of dif	Terent digital meters.		
Classification Deflection			
Value and Marine	trol and damping torque	s – Ammeters an	
alostrostatio instruments	g non type instruments, dy	torque and control	
torque Errors and compensation	pression for the deflecting	ing shunts and serie	nours-vo
resistance $-CT$ and PT . Ratio at	nd phase angle errors	ing shunts and some	
Unit_2: Measurement of Powe	er and Energy:		
Single phase and Three Phase	dynamometer type wattme	eter LPF and UPI	7
expression for deflecting and co	ntrol torques – Extension o	f range of wattmet	er l
using instrument transformers –	Measurement of active and	d reactive powers i	n
balanced and unbalanced system	ns. Single phase induction	type energy meter	– Hours-10
driving and braking torques $-\epsilon$	errors and compensations –	testing by phanton	n
loading, Three Phase Energy me	eter.	0 7 1	
Unit-3: Measurements of R, L	& C Elements		
Method of measuring low, med	ium and high resistance $-s$	sensitivity of Whea	t-
stone's bridge - Carey Foster's	bridge, Kelvin's double b	pridge for measurin	g
low resistance, measurement	of high resistance – loss	of charge method	d.
Measurement of inductance-	Q-Factor - Maxwell's bri	idge, Hay's bridge	е,
Anderson's bridge, Owen's brid	ge. Measurement of capacit	tance and loss angle	e.
Wien's bridge – Schering Bridge	е.	_	Hours-12
Potentiometers			
Principle and operation of D.C.	Crompton's potentiometer	- Standardization	-
Measurement of unknown resist	ance - Current - Voltage -	AC Potentiometer	s:
polar and coordinate types -Star	ndardization – Applications.		

Unit–4: Transducers	
Introduction to transducers – Classification of transducers – Advantages ofElectrical transducers – Characteristics and choice of transducers – Principle operation of resistor, inductor and capacitor transducers – LVDT and its applications – Strain gauge and its principle of operation – Guage factor – Thermistors – Thermocouples– Piezoelectric transducers – Photo diodes Hall	Hours-07
effect sensors	
Unit–5: Digital Meters	
Digital frequency meter – Digital Voltmeters – Successive approximation DVM	Hours-08
- Ramp type DVM and Integrating type DVM – Digital frequency meter -	
Digital multimeter - Digital tachometer - Digital Energy Meter - Q meter -	
Power Analyzer. CRO- measurement of phase difference & Frequency using	
lissajious patterns - Numerical Problems	
Course outcomes:	
On completion of the course student will be able to:	
1. Analyze PMMC and mi meters and instrument transformers.	
2. Explain the working principle & operation of different types of power & e	nergy
meters.	
3. Derive the unknown physical parameters such as R, L, C and explain the v	vorking
principle & operation of potentiometers.	
4. Analyze the performance of various transducers.	·
5. Apply the use of different digital meters.	
Text Books:	
1. Electrical Measurements and measuring Instruments – by E.W. Goldingand	
F.C.Widdis, fifth Edition, Wheeler Publishing.	
2. Modern Electronic Instrumentation and Measurement Techniques – A.D.	
Helfrickand W.D. Cooper, PHI, 5th Edition, 2002.	
3. Electrical and Electronic Measurements and instrumentation by R. K.	
Rajput, S. Chand.	
Reference Books:	
1. Electrical & Electronic Measurement & Instruments by A.K. Sawhney, Dha	anpat Rai
&Co. Publications.	
2. Electrical Measurements – by Buckingham and Price, Prentice –Hall	
3. Electrical Measurements by Forest K. Harris. John Wiley and Sons	
4. Electrical Measurements: Fundamentals, Concepts, Applications – by Reiss	sland,
M.U, New Age International (P) Limited, Publishers.	D
Electrical and Electronic Measurements – by G. K. Banerjee, PHI Learning	g PrivateLtd.,
NewDeini-2012.	

	Course Structure for III B. Tech II Semester Under the Regulations of SITE-21						
	SEMESTER- VI						
S. No	Course Category	Course Code	Course Title	L	T	Р	С
1	PC	21EEEET6010	Power System Analysis, Operation & Control	3	0	0	3
2	PC	21EEEET6020	Microprocessors & Microcontrollers	3	0	0	3
3	PC	21EEEET6030	Power Semiconductor Controlled ET6030 Drives.				3
4	PE	21EEEP604X	Professional Elective-II	3	0	0	3
5	OE	21EEXXO605X	Open Elective -II	2	0	2	3
6	PC	21EEEEL6060	Microprocessors & Microcontrollers Laboratory		0	3	1.5
7	PC LAB	21EEEEL6070	Control Systems Lab	0	0	3	1.5
8	PC LAB	21EEEEL6080	Power Systems Analysis Lab	0	0	3	1.5
9	SAC/S C	21EEXXS6090	Soft Skills & Aptitude Builder - 2	0	0	0	2
	TOTAL				0	11	21.5
10	H/M		Honor/Minor courses(The hours distribution can be 3-0-2 or 3-1-0)	4	0	0	4

Professional Elective-II

X

S. No	Course Code	Course Title	L	Т	Р	С
1	21EEEP604A	Electrical Machine Modeling & Analysis	3	0	0	3
2	21EEEEP604B	Power system Protection.	3	0	0	3
3	21EEEP604C	Control system design.	3	0	0	3

POWER SYSTEM AN	ALYSIS, OPERATI	ON & CONTROL	
Subject Code	SEMESTER-VI 21FFFFT6010	IA- Marks	30
Number of Lecture Hours/week	<u>211212110010</u> 3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits – 03		
Course Objectives:			
This course will enable student to :			
1. Know the importance of power	er flow control.		
2. Analyze different faults.			
3. Understand the concept of sta	ıbility.		
4. Understand real power control	ol and operation.		
5. Understand real time control	of power systems.		
Unit-1			
Power Flow			
Formation of Y-bus and Z- bus matrix	k. Necessity of power flo	ow studies, Static Real	
and Reactive power flow equations at	a node. Application of	numerical methods for	Hours –
solution of non- linear algebraic eq	uations – Gauss Seide	el, Newton- Raphson,	10
Decoupled and fast decoupled methods	for the solution of the po	ower	
flow equations and its comparisons.			
Unit – 2			
Fault Analysis			
Symmetrical Fault analysis - Short circu	ut MVA Calculations, U	nsymmetrical faults	Hours
on power system (LG-LL-LLG and LLI	L)		-08
Unit – 3			
Stability			
Swing Equations of a synchronous mac	chine connected to an inf	finite bus. Power angle	
curve - Synchronizing Power Coefficien	nt. Methods of stability a	nalysis - Euler, Runge-	Hours
Kutta and Equal Area Criterion. Loss of	of synchronism in a sing	le machine infinite bus	- 09
system, sudden increase in mechanica	l input power, sudden le	oss of line and three	
phase fault. Series compensation of Tra	nsmission lines for		
stability improvement.			
Omenation and Control			
An overview of power system operation	n and control Turbing	and Speed Governors	
Encourage dense dense filed D	n and control, ruivilles	and Speed- Oovernors,	
Frequency dependence of loads, Dro	bop Control and Powe	r Snaring. Automatic	Hours
Generation and absorption of reactive	e power by various co	mponents of a Power	- 08
System. Excitation System Control in	synchronous generator	s, Methods of voltage	
control - Automatic Voltage Regulation	•		

Unit – 5	
Power System Economics and Management	
Power System load variation- System load characteristics, load curves - daily, weekly	Hours
and annual, load-duration curve, load factor, diversity factor. Reserve requirements:	- 10
Installed reserves, spinning reserves, cold reserves, hot reserves. Load forecasting,	
techniques of forecasting. Economic dispatch – Numerical problem lambda-iteration	
method. Generation Control and integration of economic dispatch control with LFC.	
unit commitment numerical problems solutions Priority-list methods forward	
dynamic programming approach and λ -iteration method	
dynamic programming approach and x-iteration method.	
Course outcomes:	
On completion of the course student will be able to:	
1. Generalize the power flow analysis using various methods.	1
2. Find the fault currents for all types faults to provide data for the design of protective of	devices.
3. Understand the load flow solution of a power system using different methods.	
4. Understand real time control of power systems.	
5. Compare unit commitment and economic dispatch and their importance.	
Question paper pattern:	
1 Each full question comises 14 ments	
1. Each full question will have sub question covering all tenios under unit	
2. Each full question will have sub question covering all topics under unit.	.;+
The student will have to answer 5 full questions selecting one full question from each un	III.
1. J. Grainger and W. D. Stevenson, "Power System Analysis", McGraw Hill	
2 O I Elgord "ElectricEnergySystemsTheory" McGrowHillEducation 1005	
A R BergenandV Vittal "PowerSystem Analysis" PearsonEducationInc 1999	
Reference Books.	
1. D. P. Kothari and I. J. Nagrath. "Modern Power System Analysis". McGraw Hill	
Education, 2003.	
2. B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanavake and G. Strbac, "Electric Power	
Systems", Wiley,2012.	

MIC	ROPROCESSORS &	'D VI	
MICKOCON Subject Code		IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Crodite 03		05
Course Objectives:	Cicuits-05		
This course will enable student to:			
1. To understand the organization	n and architecture of Micr	oprocessor	
2. Know the basic principles and	operation of various circu	it breakers.	
3. Explain the protective scheme	es used for generator and t	ransformers.	
4. Explain the protective scheme	es used for feeders and tra	nsmission lines.	
5. Evaluate static and microproce	essor based relays		
Unit 1: Fundamentals of Microproce	ssors & Microcontrollers	8	Hours
Fundamentals of 8086 Microproces	ssor Architecture, Func	tional diagram,	
Register Organization, Memory Seg	mentation, Memory add	resses, Physical	09
Memory Organization, Difference betw	ween Microprocessor and	microcontroller,	0)
Comparison of 8- bit, 16-bit and 32-bit	microcontrollers.		
Unit-2: The 8051 Microcontroller			
Overview of 8051 Microcontroller,	Architecture, I/O ports	and Interrupts,	08
Memory Organization, Register set, Tim	ers and Counters.		
Unit 3: Instruction set and Program	ning iona Lacial instruction	Data Transfor	
Addressing Modes, Arithmetic Instruction	one Bronch instructions	S, Data Transfer	10
Instructions, Simple Assembly langua	ons, branch instructions,	with and without	10
loops) to use these instructions	ge program examples (w	itii and without	
Unit 4: Memory and I/O interfacing			
I/O And Memory Interface: LCD. K	evboard. External Memo	rv RAM. ROM	08
Interface, ADC, DAC Interface to 8051		5	
Unit 5: External Communication Int	erface & Applications		
Synchronous and Asynchronous Comr	nunication. RS232, SPI, I	2C. Introduction	
and interfacing to protocols like Bl	lue-tooth and Zig-bee. I	LED, LCD and	10
keyboard interfacing. Stepper motor	interfacing, DC Motor	interfacing, and	
sensor interfacing.			

On completion of the course student will be able to:

- 1. Illustrate the fundamentals of 8086 microprocessor.
- 2. Understand the fundamentals of 8051 microcontroller.
- 3. Explain the instruction set of 8051 microcontroller.
- 4. Compose the programming of 8051 microcontroller.
- 5. Examine the memory and I/O interfacing.

Question paper pattern:

The question paper will have 10 questions.

- 1. Each full question carries 14 marks.
- 2. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. Muhammad Ali Mazidi & Janice Gilli Mazidi, 'The 8051 Micro Controller and Embedded Systems', Pearson Education, Second Edition 2011.
- 2. Kenneth Ayala, 'The 8051 Microcontroller', Thomson, 3rd Edition 2004
- 3. Ramesh S. Gaonkar, 'Microprocessor Architecture Programming and Application', Pen ram International (P)ltd., Mumbai, 6th Education, 2013.

- 1. Douglas V. Hall, "Micro-processors & Interfacing", Tata McGraw Hill 3rd Edition, 2017.
- 2. R.S. Kaler "A Text book of Microprocessors and Micro Controllers" I.K. International Publishing House Pvt. Ltd.
- 3. Krishna Kant, "Micro-processors & Micro-controllers", Prentice Hall of India, 2007.
- 4. Ajit Pal "Microcontrollers Principles and Applications" PHI Learning Pvt Ltd 2011.

POWER SEMICOR	NDUCTOR CONTROLL	ED DRIVES	
Subject Code	21EEEET6030	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Tredits-03		00
Course Objectives	Cituits-05		
This course will enable student to:			
1. To analyze the operation of three	phase converter control	ed dc motors and four qu	adrant
operation of dc motors using dua	l converters.	·	
2. To discuss the converter control	of dc motors in various q	uadrants.	
3. To understand the concept of spe	ed control of induction n	notor by using AC voltage	e
controllers and voltage source in	verters.		
4. To learn the principles of static ro	otor resistance control an	d various slip power reco	overy
schemes.	1		
5. To understand the speed control	mechanism of synchrono	bus motors	
Unit-1 Eurodemontols of Electric Drives			
Fundamentals of Electric Drives	tion. Load torque compo	nents Nature and	
classification of load torques. Steady stat	te stability I oad equaliz	vation Four	Hours
quadrant operation of drive (hoist contro	1) Braking methods: Dy	namic. Plugging	-08
Regenerative methods.	i) ,Draining methods (D)		
Unit – 2			
Controlled Converter Fed DC Motor	Drives		
1-phase half and fully controlled conve	erter fed separately and	self, excited DC motor	Hours
drive, Output voltage and current wavef	forms, Speed, torque exp	pressions, Speed, torque	-08
characteristics, Principle of operation	of dual converters and	dual converter fed DC	- 00
motor drives, Numerical problems.			
Unit – 3			
DC-DC Converters Fed DC Motor Dr	ives		
Single quadrant, I wo quadrant and for	our quadrant DC-DC c	converter fed separately	Hours
current waveforms. Speed, torque expres	sions Speed torque cha	vactoristics	-10
Four quadrant operation Closed loop op	eration (qualitative treat	nent only)	
$\frac{1}{1} \frac{1}{1} \frac{1}$	eration (quantative treat	nent omy).	
3-phase Induction motor Drives			_
Stator side control of 3.phase Induction	motor Drive:		
Stator voltage control using 3, phase A	C voltage regulators, W	aveforms, Speed torque	
characteristics, Variable Voltage Varia	able Frequency control	of induction motor by	
PWM voltage source inverter, Closed	d loop v/f control of	induction motor drives	Hours -
(qualitative treatment only). Rotor side	control of 3, phase Induc	tion motor Drive: Static	12
rotor resistance control, Slip power re	covery schemes, Static	Scherbius drive, Static	
Kramer drive, Performance and speed to	rque characteristics, Ad	vantages–Applications.	
Unit – 5			
Control of Synchronous Motor Drives			
Separate control & self, control of syn	chronous motors, Operation	ation of self, controlled	Hours
(qualitative treatment only). Variable free	op control operation of sy quency control. Pulse wi	dth modulation.	-07

On completion of the course student will be able to:

- 1. Explain the fundamentals of electric drive and different electric braking methods.
- 2. Analyze the operation of three phase converter fed dc motors and four quadrant operations of dc motors using dual converters.
- 3. Describe the converter control of dc motors in various quadrants of operation
- 4. Know the concept of speed control of induction motor by using AC voltage controllers and voltage source inverters.
- 5. Explain the speed control mechanism of synchronous motors

Question paper pattern:

The question paper will have 10 questions.

- 1. Each full question carries 14 marks.
- 2. Each full question will have sub question covering all topics under unit. The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. Fundamentals of Electric Drives by G K DubeyNarosaPublications
- 2. Power Semiconductor Drives, by S.B.Dewan, G.R.Slemon, A.Straughen, Wiley, IndiaEdition.

- **1.** Electric Motors and Drives Fundamentals, Types and Applications, byAustin Hughes and Bill Drury,Newnes.
- **2.** Thyristor Control of Electric drives Vedam Subramanyam TataMcGraw HillPublications.
- 3. Power Electronic Circuits, Devices and applications by M.H.Rashid, PHI
- 4. Power Electronics handbook by Muhammad H.Rashid, Elsevier.

ELECTRICAL MACHINE MODELLING AND ANALYSIS			
SEMESTER-VI			
Subject Code	21EEEEP604A	IA-Marks	30
Number of Lecture Hours/Week	<u>3L</u>	Exam-Marks	70
Total Number of Lecture Hours	45	Exam-Hours	03
Credits -03			
Course-Objectives:			
1 Unified theory of rotating machines			
 Onnied theory of rotating machines. Concert of where transformation. 			
2. Concept of phase transformation.			
3. Mathematical modeling of machines single phase induction			
4. Develop concepts on mathematical modeling of electrical machines.			
5. Analyze BLDC Machine and switched reluctance machine based on mathematical			
modeling of BLDCM and SRM			
Unit 1			Hours
Basic concepts of modeling: Basic Two-pole Machine representation of			
Commutator machines, 3-phase synchronous machine with and without damper			10
bars and 3-phase induction machine, Kron's primitive Machine-voltage, current			10
and Torque equations			
Unit 2			
DC machine modeling: Mathematical model of separately excited D.C Motor –			
Steady State Analysis-Transient State Analysis-Sudden application of Inertia Load-			10
Transfer function of Separately excited D.C Motor- Mathematical model of D.C			10
Series motor, Shunt Motor-Linearization Techniques for small perturbations			
Unit 3			
Reference frame theory & Modeling of single-phase Induction Machines:			
Linear Transformation-Phase transformation - three phase to two phase			10
transformation (abc to dq0) and two phase to three phase transformation dq0 to			10
abc -Power equivalence- Mathematical modeling of single-phase induction			
Inacimies.			
		1 • 1 •	
Modeling of three phase induction	Machine: Generalized mode	1 in arbitrary	
reference frame-Electromagnetic Torque-Derivation of commonly used induction			00
machine models- Stator reference frame model-Rotor reference frame model-			Vð
linkages as variables			
Linit 5			
Modeling of Synchronous Machine: Synchronous machine inductances_voltage			
equations in the rotor's day reference frame-electromagnetic torque-current in			
terms of flux linkages-three phase synchronous machine model Modeling of 07			07
Special Machines Modeling of PM Synchronous motor, modeling of BLDC motor			07
and modeling of Switched Reluctance	motor.		

On completion of the course student will be able to:

- 1. Discuss about the basic concepts of machine modeling
- 2. Develop mathematical model of dc motor
- 3. Acquire knowledge on the abc to dq0 and dq0 to abc transformations to develop mathematical model of single-phase induction machine
- 4. Design control strategies based on dynamic modeling of 3-ph Induction machines and 3phase synchronous machine.
- 5. Model synchronous machine and special electrical machines

Question paper pattern:

The question paper will have 10 questions.

- 1. Each full question carries 14 marks.
- 2. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. Generalized theory of Electrical Machinery –P.S.Bimbra- Khanna Publishers.
- 2. Electric Motor Drives Modeling, Analysis& control -R.Krishnan- Pearson Publications-1st edition -2002.

- 1. Analysis of Electrical Machinery and Drive systems P.C.Krause, OlegWasynczuk, Scott D.Sudhoff Second Edition-IEEE Press.
- 2. Dynamic simulation of Electric machinery using Matlab / Simulink –CheeMunOng-PHI.
- 3. Modern Power Electronics and AC Drives-B.K. Bose PHI
| POWER | SYSTEM PROTECTIO | N | |
|--|----------------------------------|-----------------------|-------------|
| Subject Code | SEMESTER-VI
21FFFFD604B | IA Marks | 30 |
| Number of Lecture Hours/week | 3L | Exam Marks | 70 |
| Total Number of Lecture Hours | 15 | Exam Mains | 03 |
| Total Number of Lecture Hours | | Exam mours | 03 |
| Course Objectives | Creatts-03 | | |
| This course will enable student to: | | | |
| 1 Know the classification opera | tion and application of dif | ferent types of elec | tromagnetic |
| nrotective relays | non and application of un | referit types of elec | uomagnetie |
| 2 Know the basic principles and | operation of various circu | it breakers | |
| 3 Explain the protective scheme | es used for generator and the | ansformers | |
| 4 Explain the protective scheme | es used for feeders and trai | smission lines | |
| 5. Evaluate static and microproce | essor based relays | | |
| IInit-1 | | | Hours |
| Protective Relays: zones of protection | , primary and backup prof | ection, essential | livurs |
| qualities of protection, classification of | of protective relays and s | chemes, current | 10 |
| transformers, potential transformers. | Introduction to over- | current relays. | 10 |
| directional relays, distance relays, diffe | rential relays. | | |
| Unit-2 | | | |
| Circuit Breakers: Introduction, arci | ng in circuit breakers, | arc interruption | |
| theories, re-striking and recovery voltage | ge, resistance switching, c | urrent chopping, | 08 |
| interruption of capacitive current, oil | circuit breaker, air blast | circuit breakers, | 00 |
| SF6 circuit breaker, operating mecha | nism, selection of circuit | t breakers, high | |
| voltage DC breakers, ratings of circuit l | preakers, testing of circuit | breakers | |
| Unit-3 | | | |
| Generator Protection: External and | l internal faults, differen | ntial protection, | |
| biased circulating current protection, se | elf-balance system. Over-c | current and earth | |
| fault protection, protection against failu | re of excitation. | | 10 |
| Transformer protection: Differenti | al protection, self-bala | nce system of | |
| protection, over-current and earth far | ult protection, Buchholz' | s relay and its | |
| operation. | | | |
| Unit-4 | | 11.1.6.1 | |
| Feeder protection: Protection of radi | al feeders, protection of | parallel feeders, | |
| protection of ring mains, differential | phot protection for feed | ers, Merz Price | 10 |
| Transmission Line Protection: Defin | l.
its distance and time dist | anas protection | |
| phase and earth fault protection. carrier | autrent protection | ance protection, | |
| Unit -5 | | | |
| Static Relays: Static over current | relays static direction | al relay static | |
| differential relay and static distance rel | avs | ui ioiuy, static | 07 |
| Microprocessor Based Relays: Over | current relays directional | relays, distance | |
| relays. | | | |

On completion of the course student will be able to:

- 1. Analyze the working principle and operation of different types of electromagnetic protective relays.
- 2. Analyze quenching mechanisms used in air, oil, SF6 and vacuum circuit breakers
- 3. Design protection schemes for generator and transformers.
- 4. Design protection schemes for feeders and transmission lines.
- 5. Evaluate static and microprocessor based relays.

Question paper pattern:

- The question paper will have 10 questions.
 - 1. Each full question carries 14 marks.
 - 2. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. Badri ram and D.N. Vishwakarma, Power System Protection and Switchgear, TMH, 2001.
- 2. U.A. Bakshi, M. V. Bakshi: Switchgear and Protection, Technical Publications.
- 3. L. Singh, Digital Protection: Protective relaying from Electromechanical to
- Microprocessors New Age International.

- 1. Fundamentals of Power System Protection by Paithankar and S.R.Bhide., PHI.
- 2. Art & Science of Protective Relaying by C R Mason, Wiley Eastern Ltd.
- 3. Protection and Switch Gear by BhaveshBhalja, R.P. Maheshwari, NileshG.Chothani, Oxford University Press.

CONT	ROL SYSTEM DESIGN	1	
~ • • ~ ~ •	SEMESTER-VI	1	
Subject Code	21EEEEP604C	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits – 03		
Course Objectives:			
This course will enable student to			
1. Explain the concepts of design	problem and various des	ign specifications.	
2. Discuss the design of compens	ator for both time and fre	quency domain specifi	cations.
3. Explain the design of various of	controllers.		
4. Understand the concept on fee	d-forward control.		
5. Apply the knowledge on state	feedback controller desig	n.	
Unit-1			Hours
Design Specifications :			
Introduction to design problem and pl	hilosophy. Introduction t	o time domain and	
frequency domain design specification	and its physical relevance	e. Effect of gain on	08
transient and steady state response.	. Effect of addition o	f pole on system	
performance. Effect of addition of zero	on system response.		
Unit-2			
Design of Classical Control System in	the time domain and F	requency domain :	
Introduction to compensator. Design of	of Feedback and Feed for	orward compensators,	00
Feedback compensation. Realization of	compensators.		07
Compensator design in frequency do	main to improve steady	y state and transient	
response. Feedback and Feed forward c	ompensator design using	Bode diagram.	
Unit-3			
Design of PID controllers :			
Design of P, PI, PD and PID controlle	ers in time domain and f	requency domain for	09
first, second and third order systems.	Control loop with auxili	ary feedback – Feed	
forward control.			
Unit-4			
Control System Design in state space	:		
Review of state space representation.	Concept of controllability	ty & observability,	
effect of pole zero cancellation on the	controllability & observa	bility of the system,	10
pole placement design through state f	eedback. Ackerman's Fo	rmula for feedback	
gain design. Design of Observer. Full	order, Reduced order of	bserver. Separation	
Principle.			
Unit-5			
State Feedback Control:			0.0
Introduction, state feedback controller	design with example, I	Design insights using	09
controllability, Ackermann's pole-plac	ement formula, Referenc	e input tracking with	
example, Pole-placement example with	full Matlab code.		

On completion of the course student will be able to:

- 1. Elaborate the concepts of various designing fundamentals.
- 2. Apply the basic design in both time and frequency domain
- 3. Understand the concepts of PID controllers
- 4. Apply the knowledge of design using state space
- 5. Discuss the concepts of state feedback controller design.

Question paper pattern:

The question paper will have 10 questions.

- 1. Each full question carries 14 marks.
- 2. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. N. Nise, "Control system engineering", John Wiley, 2000.
- 2. I.J. Nagrath and M. Gopal, "Control system engineering", Wiley, 2000.
- 3. M. Gopal, "Digital Control Engineering", Wiley Eastern, 1988.
- 4. K. Ogata, "Modern Control Engineering", Prentice Hall, 2010.

- 1. B. C. Kuo, "Automatic Control system", Prentice Hall, 1995.
- 2. J. J. D' Azzo and C. H. Houpis, "Linear control system analysis and design (conventional and modern)", McGraw Hill, 1995.
- 3. R. T. Stefani and G. H. Hostetter, "Design of feedback Control Systems", Saunders College Pub, 1994.

MICROPROCESSORS & M	ICROCONTROLLE	CRS LABORATOR	Y
	21EEEEL6060	1A Marks	15
Number of Practice Hours/Week	3P	Exam Marks	35
Total Number of Practice Hours	36	Exam Hours	03
	Credits – 1.5		
Course Objectives:			
This course will enable student to :			
1. Study the Architecture of 8, 16, 3	32 bit Microprocessors	5.	
2. Learn the Programming skills of	Microprocessor & Mi	crocontroller.	
3. Learn the design aspects of I/O a	nd Memory Interfacin	g circuits.	
4. Study the Architecture of 8051 n	nicrocontroller		
5. Learn the design aspects of 8051	for different applicati	ons.	
List of Experiments (Any 10 experim	ents must be conduct	ted)	
PART-A Microprocessor 8086			
1. Arithmetic operation – Multi byte a	addition and subtraction	n, multiplication and	d
Division			
2. Arithmetic operation - Signed and	Unsigned arithmetic o	peration, ASCII - ari	thmetic
operation.			
3. Logic operations- Shift and Rotate-	- Converting packed B	CD to unpacked BC	D, BCD
to ASCII conversion.			a .
4. By using string operation and instru	uction prefix: Move bl	ock, Reverse string,	Sorting,
PART-B Microcontroller 8051	0051		
5. Reading and writing on a parallel p	ort using 8051.		
6. Timer in different modes using 805	91.		
7. 8-bit Digital to Analog Converter u	using 8051		
DAPT_C 8051 Interfacing	ising 8031		
9 Switches and LEDs			
10. 7-Segment display (multiplexed)			
11 Stepper Motor Interface			
12 Traffic Light Control			
Course Outcomes:			
On completion of the course student wil	l be able to:		
1. Develop programs on 8086 Microp	processor.		
2. Develop programs for different apr	blications using 8086 &	& 8051.	
3. Design and implement programs of	n 8051 Micro controlle	er.	
4. Interface Micro Controller with oth	er electronic devices.		
5 Demonstrate the I/O interfacing			

CON	TROLSYSTEMS LAB		
Subject Code	21EEEEL6070	IA Marks	15
Number of Lecture Hours/week	3P	Exam Marks	35
Total Number of Lecture Hours	32	Exam Hours	03
	Credits1.5		
Course Objectives:			
This course will enable students:			
1. To strengthen the knowledge of	Feedback control		
2. To inculcate the controller desig	gn concepts		
3. To introduce the concept of Ma	thematical Modeling		
List of Experiments	(Any ten experiments n	nust be conducted)	
1. Time response of Second order	system and determination	n of time domain spec	ifications
2. Characteristics of AC servomot	or.		
3. Characteristics of DC servomot	or.		
4. Transfer function of DC Motor	and DC Generator		
5. Effect of P, PD, PI, PID Contro	ller on a second order sys	stems	
6. Lagand lead compensation–Ma	gnitude and phaseplot.		
7. Temperature controller using Pl	D Controller.		
8. Stabulity analysis (RootLocus,	Bode plot ,Nyquist plot) (of linear time in variar	nt system.
9. Find the delay time and rise tim	e of PID Controlled DC	motor using MATLA	В
10. Design the compensators with g	given gain margine and pl	hase margine.	
11. State space model for classical	transfer function.		
Course(Lab)outcomes:			
On completion of the course student with	ll be:		
1. Able to derive transfer function of	different physical Syster	ns	
2. Able to analyze the behavior of se	cond order system with the	ime domain specificat	ions
3. Able to compute Stability of LTI s	system using Bode Plot N	lyquist plot	

- 4. Able to compute Stability of LTI system using Nyquist plot
- 5. Able to analyze the the different controllers

		21EEEEL6080	IA Marks	15
Number of Practice Hours/	week	3P	Exam Marks	35
Total Number of Practice H	lours	36	Exam Hours	03
	(Credits – 03		
Course Objectives:				
This course will enable stud	lent to :			
1. Examine various nu	umerical method	ls applied to a powe	er system in steady state.	
2. Explain stability co	nstraints in a sy	nchronous grid.		
3. Demonstrate the me	ethods to contro	l the voltage, freque	ency and power flow.	
4. Explain the monito	ring and control	of a power system.		
5. Discuss the basics of	of power system	economics.		
List-of-Exp	eriments-(Any	-ten-experiments-	must-be-conducted)	
1. Formation of Bus Admi	ttance and Impe	dance Matrices and	Solution of Networks.	
2. Load Flow Analysis- I :	Solution of load	d flow and related p	roblems using Gauss-Sei	del Method
3. Load Flow Analysis II:	Solution of load	l flow and related p	roblems using Newton Ra	aphson.
4. Load Flow Analysis - I	l: Solution of lo	ad flow and related	l problems using decoup	led and fast
decoupled.		······································		
5. Fault Analysis of Symm	etrical and unsy	mmetrical faults.	connected a single infinit	o hua
7 Analysis of application	of Equal Area C	riterion in stability	studies	e dus.
8 Transient and Small Sig	nal Stability An	alvsis. Single-Mach	vine Infinite Rus System	
9 Transient Stability Anal	vsis of Multi m	achine Power Syste	ms	
10. Load - Frequency Dyna	mics of Single-	Area and Two-Area	a Power Systems.	
11. System load variation a	nd load characte	ristics - load curves	and load-duration curve	
12. Economic dispatch usin	g lambda-iterati	on method.		
13. Unit commitment: Prior	ity-list schemes	and dynamic progr	amming.	
Course outcomes:				
On completion of the course	student will be	able to:		
1. Examine various nu	umerical method	ls applied to a powe	er system in steady state.	
2. Examine the power	system under a	bnormal conditions		
3. Examine stability c	onstraints in a s	ynchronous grid.		
4. Demonstrate the ma	ethods to contro	l the voltage, freque	ency and power flow.	
		\mathcal{O}		
5. Illustrate the monit	oring and contro	ol of a power system	1.	

Course structure for Electrical & Electronics Engineering Honors (for EEE Students)

	I cell II Demestel	. •				
S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21EEEEH611A	Modern Power Electronics	3	1	0	4
2	21EEEEH611B	AC Drives	3	1	0	4
3	21EEEEH611C	Custom Power devices.	3	1	0	4
4	21EEEEH611D	High Voltage Engineering	3	1	0	4

III B. Tech II Semester:

MODERN	N POWER ELECTRO	NICS	
	SEMESTER-VI		
Subject Code	2IEEEEH6IIA	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits – 04		
Course Objectives:			
This course will enable student to :			
1. Understand the basic concept of	f power electronics in th	e field of power con	trol & drives.
2. Understand the concept and me	ethods behind modern po	wer electronic devic	es.
3. Understand the knowledge beh	ind power semiconducto	rs technologies and	their
advancement in the field of pov	wer conversion.		
4. Understand the concept of diffe	erent level of converters.		
5. Understand the concept of mod	lern and advance electric	drives.	
Unit-1			
Introduction:			
Review of power semiconductor device	s: Thyristor, IGBT, MOS	SFET, IGCT, GTO	Hours – 06
and their driver circuits, role of SiC in p	ower semiconductor tech	nnology	
Unit – 2			
AC-DC Converter:			
Uncontrolled rectifier, semi-controlled	rectifiers, fully controlle	d rectifiers with R,	
RL and RLE load, effect of source indu	ictance on performance	of converter, firing	
schemes and circuits,			11
Multipulse Converters:			Hours -12
Multi-pulse converters: 12,18 and 24 pu	lse converters, phase shi	fting transformers	
Power Factor:			
Power factor improvement techniques	, PWM rectifiers: equa	l area PWM, sine	
PWM, Single Phase and Three phase bo	ost rectifier circuits		
Unit – 3			
DC-AC converters:			
Voltage Source Inverter: 120° and 180	^o conduction modes,		
PWM Techniques of Voltage fed Co	nverters: Selective Har	monic Elimination	
(SHE), Third harmonic injection, Hyste	eresis Current Control, S	pace Vector Pulse	Hours – 12
Width Modulation.			
Current Source Inverter:			
Current Source inverters and their rol	le in high power drive	s: Auto sequential	
Current Fed inverter, Pulse Width Modu	ilation of CSI		
Unit – 4			
Multilevel Inverters:			
Diode Clamped, Flying Capacitor, Cas	scaded H-Bridge topolo	gy: operation with	Hours – 08
equal and unequal DC voltages, Carrier	modulation schemes of	MLI, SVPWM of	
MLI, Neutral Point Balancing schemes			
Unit – 5			
Advance Electrical Drives:			
Brushless DC motor:			Hours – 07
Sinusoidal and Trapezoidal BLDC	motor, Electronic Con	nmutator, Torque	
production in BLDC motor, Control of I	Brushless DC drives		

Switched Reluctance Motor:

Elementary Operation and Principle of operation, Modes of operation, Converter circuits for SRM.

Course outcomes:

On completion of the course student will be able to:

- 1. Know working of concept of power electronics in the field of power control & drives.
- 2. Analyze concept and methods behind modern power electronic devices.
- 3. Understand the power semiconductors technologies and their advancement in the field of power conversion.
- 4. Identify the different areas power conversion and related technology
- 5. Analyze modern and advance electric drives in day to day life.

Question paper pattern:

- 1. This section will have 10 questions.
- 2. Each full question carries 14 marks.
- 3. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. Rashid, M.H., "Power Electronic Circuits Devices and Applications", Prentice Hall of India Pvt. Ltd., New Delhi, 2nd Edition 1999
- 2. B.K. Bose, "Modern Power Electronics and AC Drives", Prentice Hall of India Pvt. Ltd., New Delhi.
- 3. Dubey G.K., "Power Semiconductors Controlled Drives", Prentice Hall Eaglewood Cliffs, New Jersey, 2002.

- 1. Sen P.C., "Thyristor Dc Drives", John Wiley and sons, New York.
- 2. Bin Wu., "High power converters and AC Drives", Wiley-IEEE Press.

	AC DRIVES SEMESTER-VI		
Subject Code	21EEEEH611B	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits – 04		
 Course Objectives: The Objectives of this course to Understand the concept of phase the set of the set o	cansformation luction machines. us machines. of induction motor drives ntrol of synchronous mot	s or drives.	
Unit 1: Reference Frame Theory			Hours
Reference frame theory: Linear transformation (abc to dq0) and $2-\phi$ to equivalence	rmation, Phase transform p 3- ϕ transformation (do	nation - 3- ϕ to 2- ϕ 10 to abc) - Power	08
Unit 2: Modeling of 3-& Induction Mac	hines		
 3-φ Induction Machines: Generalized Electromagnetic torque - Stator reference Synchronously rotating reference frame 	model in arbitrary frame model - Rotor ref model	reference frame - erence frame model	12
Unit 3: Modeling of Synchronous Mach	ines		
Synchronous machine inductances – vo frame electromagnetic torque- current in machine model	ltage equations in the ro terms of flux linkages	otor's dq0 reference - three synchronous	08
Unit 4: Control of Induction Motor Dri	ves		
Stator side control - Stator voltage cont Waveforms – Speed torque characteristic control of induction motor by PWM volta of induction motor drives (qualitative treat Rotor side control - Static rotor resistant Static Scherbius drive – Static Krame characteristics – Advantages – Application	trol using 3-phase AC was a variable Voltage age source inverter – Clost tment only). the control – Slip power ar drive – Performance and source and sour	voltage regulators – Variable Frequency sed loop V/f control recovery schemes – and speed torque	08
Unit 5: Control of Synchronous Motor	Drives		
Separate control & self-control of synchro synchronous motors by VSI – Closed Lo drives (qualitative treatment only) – V modulation.	onous motors – Operation oop control operation of Variable frequency cont	n of self - controlled synchronous motor rol – Pulse width	09
Course Outcomes:			
 Students will be able to: 1. Analyze the phase transformation 2. Illustrate the modeling of 3- φ induct 3. Illustrate the modeling of synchronou 4. Explain the v/f control of induction n 5. Compare the stator and rotor control Compare the self and separate control me 	ion machines is machines nachines methods of induction ma thods of synchronous ma	chines	

The question paper will have 10 questions.

- 1. Each full question carries 14 marks.
- 2. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. Generalized theory of Electrical Machinery –P.S. Bimbra- Khanna Publishers.
- 2. Bimal K. Bose, "Modern Power Electronics and AC Drives", Pearson Education 2002.
- 3. N. Mohan, Power Electronics- Converters, Applications and Design, 3rd Ed., John Wiley & Sons, 2003.

- 1. Vedam Subramanyam, "Electric Drives Concepts and Applications", McGraw Hill, Second Edition, 2010.
- 2. Gobal K. Dubey, "Fundamentals of Electrical Drives", Narosal Publishing House, New Delhi, Second Edition ,2009
- 3. R.Krishnan, "Electric Motor Drives Modeling, Analysis and Control", Prentice-Hall of India Pvt. Ltd., New Delhi, 2003.
- 4. M. Rashid, Power Electronics- Circuits, Devices and Applications, 3rd Ed., Prentice Hall, 2004.
- 5. Analysis of Electrical Machinery and Drive systems P.C. Krause, Oleg Wasynczuk, Scott D. Sudhoff Second Edition-IEEE Press.
- 6. Modern Power Electronics and AC Drives-B.K. Bose PHI

CUST	OM POWER DEVICES	5.	
Subject Code	21EEEEH611C	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits – 04		
Course Objectives:			
This course will enable student to:			
1. To learn different types of pow	wer quality phenomena.		
2. To identify sources for voltage	e sag, voltage swell, inter	ruptions, transients,	long
duration over voltages and har	monics in a powersystem	1.	
3. To describe power quality terr	ns and study power qualities and neuron	tystandards.	nathada
4. To learn the principle of volta	ge regulation and power i	actor improvement.	nethous.
5. To understand the power quan	ity monitoring concepts a	ind the usage of	
Unit-1			
Introduction			
Overview of power quality – Concerr	about the power quality	v – General classes	
of power quality and voltage quality	y problems – Transients	s – Long–duration	Hours -09
voltage variations – Short–duration	voltage variations – Vo	oltage unbalance –	
Waveform distortion - Voltage fluctuat	tion – Power frequency v	ariations.	
Unit – 2			
Voltage imperfections in power system	ns		
Power quality terms - Voltage sags -	Voltage swells and inter	ruptions – Sources	Hound 10
of voltage sag, swell and interruption	ons – Nonlinear loads	– IEEE and IEC	Hours - 10
standards. Source of transient over volt	ages – Principles of over	voltage protection	
- Devices for over voltage protection -	Utility capacitor switching	ng transients.	
Unit – 3	•		
Voltage Regulation and power factor	improvement:	1-4'	
voltage regulator application Cap	- Device for voltage re-	lation End user	Hours -10
\Box capacitor application – Regulating \Box	tility voltage with distri	ibuted resources –	110415 10
Flicker – Power factor penalty – Static	VAR compensations for	powerfactor	
improvement.			
Unit – 4			
Harmonic distortion and solutions			
Voltage distortion vs. Current distortion	on – Harmonics vs. Tran	nsients – Harmonic	Hours -09
indices - Sources of harmonics - E	Effect of harmonic disto	ortion – Impact of	
capacitors, transformers, motors and m	eters – Point of common	coupling – Passive	
and active filtering			
Unit – 5			
Custom power devices for power qua	ality Improvement: - Intro	oduction to shunt	Hours -08
and series compensators: Principle& W	Orking of DSTATCOM -	- DSTATCOM in	
DVR = DC Capacitor supported DVR -	Unified power quality co	anditioner	
Course outcomes:	ennied power quanty eo	inditioner.	
On completion of the course student wi	ill be able to:		
1. Differentiate between different	types of power quality pr	oblems.	
2. Explain the sources of voltage s	ag, voltage swell, interru	ptions, transients, lo	ng duration
	o norman aristom		
over voltages and harmonics in	a power system.		
over voltages and harmonics in3. Analyze power quality terms an	a power system. d power quality standard	s.	
 over voltages and harmonics in Analyze power quality terms an Explain the principle of voltage 	a power system. Id power quality standard regulation and power fac	s. ctor improvement me	ethods.

The question paper will have 10 questions.

- 1. Each full question carries 14marks.
- 2. Each full question will have sub question covering all topics underunit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. Electrical Power Systems Quality, Dugan R C, McGranaghan M F, Santoso S, and Beaty H W, Second Edition, McGraw–Hill,
- 2. Electric power quality problems –M.H.J.Bollen IEEE series-WileyIndia publications,2011.
- 3. Ghosh, Arindam, and Gerard Ledwich, 'Power quality enhancement using custom power devices' Springer Science & Business Media, 2012

- 1. Power Quality Primer, Kennedy B W, First Edition, McGraw-Hill,
- 2. Understanding Power Quality Problems: Voltage Sags and Interruptions, BollenM HJ, First Edition, IEEE Press
- 3. Power System Harmonics, Arrillaga J and Watson N R, Second Edition, John Wiley & Sons

Hig	h Voltage Engineering SEMESTER-VI		
Subject Code	21EEEEH611D	IA-Marks	30
Number of Lecture Hours/Week	3L	Exam-Marks	70
Total Number of Lecture Hours	45	Exam-Hours	03
Course-Objectives: This course will enable student to: 1. To understand HV breakdown pheno 2. To understand the breakdown pheno 3. To acquaint with the generating print 4. To understand the generating princip 5. To understand various techniques for and currents. Unit 1 Break down phenomenon in Gases: and properties. Gases as insulating me	45 Credits-04 omenon of liquids and solid die oples of Impulse voltages & curr or AC, DC and Impulse measure Insulating Materials: Types - dia – Collision process –	lectrics. of HVDC, AC vo rents. ements of high v applications	oltages. voltages <u>Hours</u> 9
Ionization process – Townsend's o limitations – Streamers Theory of brea	criteria of breakdown in ga k down – Paschen's law- Pasch	ses and its nens curve.	
Break down phenomenon in Liquids Liquid as Insulator – Pure and con	and Solids: nmercial liquids – Breakdown	n in pure and	9
commercial liquids. Intrinsic breakdown – Electromecha Breakdown of composite solid dielectr	nical breakdown – Thermal ics.	breakdown –	
Generation of High DC and High A Generation of High DC voltages: Vo Circuit – Vande- Graaff Generator. Generation of High AC voltage Transformers –Tesla Coil	C voltages: oltage Doubler Circuit - Volta s: Cascaded Transformers	ge Multiplier – Resonant	9
Unit 4			
Generation of Impulse voltages and Generation of Impulse voltages: Spe RLC circuit only- Marx Circuit. Generation of Impulse currents: Det current waves – Wave shape control – of impulse generators.	Impulse Currents: cifications of impulse wave - finitions – Circuits for produ Tripping and control	- Analysis of cing Impulse	10
Unit 5	4		0
Resistance potential divider - Ge Transformer (CVT) -Electrostatic Volt	nages: nerating Voltmeter - Capac meters – Sphere Gaps, Standar	citor Voltage ds	8
Courseoutcomes: Oncompletionofthecoursestudentwillb 1. Recognise the dielectric properties of 2. Differentiate the break down phenom 3. Explain the techniques of generation 4. Explain the techniques of generation 5. Explain measurement techniques of l	eableto: gaseous materials used in HV enon in liquid and solid dielect of high AC and DC voltages of high Impulse voltages and cu high AC - DC - Impulse voltage	equipment. ric materials. urrents. es and currents	

The question paper will have 10 questions.

- 3. Each full question carries 14 marks.
- 4. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

- Text Books:
- High Voltage Engineering: Fundamentals by E.Kuffel, W.S.Zaengl, J.Kuffel by 1. Elsevier, 2nd Edition.
- 2. High Voltage Engineering and Technology by Ryan, IET Publishers.

- 1. High Voltage Engineering by M.S.Naidu and V. Kamaraju TMH Publications, 3rd Edition
- 2. High Voltage Engineering by C.L.Wadhwa, New Age Internationals (P) Limited, 1997.
- 3. High Voltage Insulation Engineering by RavindraArora, Wolfgang Mosch, New Age International (P)Limited, 1995

Minors to other Departments

S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21XXEEM611A	Fundamentals of Electrical Power	3	1	0	4
		Generation & Economic Concepts				
2	21XXEEM611B	Fundamentals of Renewable Energy	3	1	0	4
		Sources				
3	21XXEEM611C	Fundamentals of Energy Storage	3	1	0	4
		Systems				

III B. Tech II Semester:

FUNDAMENTAL OF ELECTRICAL POWER GENERATION & ECONOMIC CONCEPTS

	CONCEPTS SEMESTED VI		
Subject Code	21XXFFM611A	IA-Marks	30
Number of Lecture Hours/Week		Fyam-Marks	<u> </u>
Total Number of Lecture Hours	46	Exam-Mairs	03
	Credits -04		
Course-Objectives:			
This course will enable student to:			
1. To understand the principle of o	peration of different compon	ents of a thermal po	wer
stations.	1 1	1	
2. To understand the principle of o	peration of different compon	ents of a Nuclear po	wer
stations.			
3. To analyze constructional and o	peration of different compone	ents of an Air and G	as
Insulated substations.			
4. To study constructional details of	of different types of cables.		
5. To understand different types of	f load curves and tariffs applied	cable to consumers.	
Unit 1			Hours
Thermal Power Stations			10
Selection of site, general layout of a th	nermal power plant showing p	paths of coal, steam,	,
water, air, ash and flue gasses, ash ha	indling system, Brief descrip	tion of components:	
boilers, super heaters, economizers, el	ectrostatic precipitators, stea	m turbines: impulse	;
and reaction turbines, condensers, feed	l water circuit, cooling towers	s and chimney.	
Unit 2			
Nuclear Power Stations	1		08
Location of nuclear power plant, we	orking principle, nuclear fis	sion, nuclear fuels,	
and coolents, types of pucker reactor	and brief description of PW	D DWD and EDD	,
Radiation: radiation bazards and shield	ling nuclear waste disposal	\mathbf{K} , D W K and FDK .	
Unit 3	ing, nuclear waste disposai.		
Substations			08
Classification of substations:			00
Air Insulated Substations indoor	& outdoor substations sub	stations lavouts of	
33/11 kV showing the location of all t	he substation equipment Bus	har arrangements in	
the sub-stations: simple arrangements	like single bus bar, sectional	lized single bus bar.	
double bus bar with one and two cire	cuit breakers, main and tran	sfer bus bar system	
with relevant diagrams.			
Unit 4			
Gas Insulated Substations (GIS) – a	advantages of gas insulated s	ubstations, different	10
types of gas insulated substations, si	ingle line diagram of gas in	sulated substations,	,
constructional aspects of GIS, installa	tion and maintenance of GIS	S, comparison of air	•
insulated substations and gas insulated	substations.	-	
Unit 5			
Economic Aspects of Power Generat	ion & Tariff		08
Economic Aspects – load curve, loa	d duration and integrated lo	ad duration curves,	
discussion on economic aspects: con	nected load, maximum dema	and, demand factor,	,
load factor, diversity factor, power ca	pacity factor and plant use fa	actor, base and peak	
load plants.			
Tariff Methods- costs of generation	n and their division into fix	ked, semi-fixed and	l
running costs, desirable characteristic	s of a tariff method, tariff m	ethods: simple rate,	,
flat rate, block-rate, two-part, three-pa	art, and power factor tariff me	thods.	

On completion of the course student will be able to:

- 1. Identify the different components of thermal power plants.
- 2. Identify the different components of nuclear power plants.
- 3. Identify the different components of air and gas insulated substations.
- 4. Identify single core and three core cables with different insulating materials.
- 5. Analyse the different economic factors of power generation and tariffs.

Question paper pattern:

The question paper will have 10 questions.

- 5. Each full question carries 14 marks.
- 6. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. A Text Book on Power System Engineering by M.L.Soni, P.V.Gupta, U.S.Bhatnagarand Chakrabarti, DhanpatRai& Co. Pvt. Ltd.
- **2.** Generation, Distribution and Utilization of Electric Energy by C.L.Wadhawa New age International (P) Limited, Publishers.

- 1. Electrical Power Distribution Systems by V. Kamaraju, TataMcGraw Hill, New Delhi.
- 2. Elements of Electrical Power Station Design by M V Deshpande, PHI, New Delhi.

FUNDAMENTALS OF RENEWABLE ENERGY SOURCES SEMESTER-VI

SEN	IESTER-VI			
Subject Code	21XXEEM611B	IA-Marks	30	
Number of Lecture Hours/Week	<u>4L</u>	Exam-Marks	70	
Total Number of Lecture Hours	45	Exam-Hours	03	
	Credits -04			
Course-Objectives:				
This course will enable student to:				
1. To study the solar radiation	data, equivalent circuit of PV	cell and its I-V &	P-V	
characteristics.				
2. To understand the concept of	of Wind Energy Conversion &	its applications.		
3. To study the principles of b	iomass and geothermal energy.			
4. To understand the principle	s of Ocean Thermal Energy Co	onversion (OTEC),	
motion of waves and power	associated with it.			
5. To study the various chemi	cal energy sources such as fue	ell cell and		
hydrogen energy along with	htheir operation and equivalen	t circuit.		
Unit 1			Hours	
Fundamentals of Energy Systems an	d Solar Energy:		10	
Energy conservation principle, Energy	y scenario (world and India) S	olar radiation		
at the Earth Surface - Equivalent circu	uit of a Photovoltaic (PV) Cel	1 - I-V & P-V		
Characteristics - Solar Energy Colle	ectors: Flat plate Collectors,	concentrating		
collectors - Solar Energy storage systems and Applications: Solar Pond - Solar				
water heating - Solar Green house.				
Unit 2				
Wind Energy:			08	
Introduction - basic Principles of Win	d Energy Conversion, the nat	ure of Wind -		
the power in the wind - Wind Energy	Conversion - Site selection co	onsiderations -		
basic components of Wind Energy Con	nversion Systems (WECS) - C	Classification -		
Applications.				
Unit 3				
Biomass and Geothermal Energy:			08	
Biomass: Introduction - Biomass c	conversion technologies - Pl	hotosynthesis,		
factors affecting Biodigestion - class	ification of biogas plants - Ty	pes of biogas		
plants - selection of site for a biogas pl	ant			
Geothermal Energy: Introduction, Geothermal Sources – Applications -				
operational and Environmentalproblem	18.			
Unit 4				
Energy From oceans, Waves & Tide	s:		10	
Oceans: Introduction - Ocean Thermal Electric Conversion (OTEC) – methods -				
prospects of OTEC inIndia.				
Waves: Introduction - Energy and	Power from the waves - V	Wave Energy		
conversion devices.				
Tides: Basic principle of Tide Energy	-Components of Tidal Energy.			

Unit 5	
Chemical Energy Sources:	08
Fuel Cells: Introduction - Fuel Cell Equivalent Circuit - operation of Fuel cell	
- types of Fuel Cells -Applications.	
Introduction - Fuel Cell Equivalent Circuit - operation of Fuel cell - types of	
Fuel Cells -Applications.	
Course outcomes:	
On completion of the course student will be able to:	
1. Analyze solar radiation data, extra-terrestrial radiation, radiation on earth's surface and solarEnergy Storage.	S
2. Illustrate the components of wind energy systems.	
3. Illustrate the working of biomass, digesters and Geothermal plants.	
4. Demonstrate the principle of Energy production from OTEC, Tidal and Waves.	
5. Evaluate the concept and working of Fuel cells & MHD power generation.	
Question paper pattern:	
The question paper will have 10 questions.	
7. Each full question carries 14 marks.	
8. Each full question will have sub question covering all topics under unit.	
The student will have to answer 5 full questions selecting one full question from each	unit.
Text Books:	
1. G.D.Rai, Non-Conventional Energy Sources, Khanna Publications, 2011.	
2. John Twidell & Tony Weir, Renewable Energy Sources, Taylor & Francis, 2013	3.
3. Renewable Energy Technologies /Ramesh & Kumar /Narosa.	
4. Renewable energy technologies – A practical guide for beginners – Chetong Sin	gh Solanki,
PHI.	
Reference Books:	
1. S.P.Sukhatme & J.K.Nayak, Solar Energy-Principles of Thermal Collection	and
Storage, TMH,2011.	
2. John Andrews & Nick Jelly, Energy Science- principles, Technologies and	
Impacts, Oxford, 2 ^m edition, 2013.	0015
3. Shoba Nath Singh, Non- Conventional Energy Resources, Pearson Publications,	2015.

ENERGY STORAGE SYSTEMS SEMESTER-VI				
Subject Code	21XXEEM611C	IA-Marks	30	
Number of Lecture Hours/Week	31,	Exam-Marks	70	
Total Number of Lecture Hours	45	Exam-Hours	03	
	Credits -03			
Course-Objectives:				
This course will enable student to:				
1. To study the Overview of energy	storage technologies			
2. To study the different types of ele	ectrical energy storage devices			
3. To understand the working of var	rious types of electric vehicle			
4. To understand the configurations	and applications of hybrid ene	rgy storage syste	ems	
5. To study the various types of ren	ewable energy systems			
6. To apply the use of energy storage	ge systems in MATLAB Simuli	nk		
Unit 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Hours	
Introduction to energy storage for	nower systems. Role of en	ergy storage	liouis	
systems applications	power systems. Role of en	ergy storage		
Overview of energy storage techn	ologies: Thermal Mechanical	Chemical	10	
Electrochemical. Electrical. Efficiency	of energy storage systems.	, chemical,		
Unit 2				
Electrical energy storage: Batteries.	Super capacitors. Superconduc	cting Magnetic		
Energy Storage (SMES), charging met	thodologies, SoC, SoH estimat	ion techniques.	10	
Hydrogen production and storage, fuel	cells.	1		
Unit 3				
Mobile storage system: electric vehic	le, G2V, V2G.		05	
Hybrid Energy storage systems: configurations and applications.			05	
Unit 4				
Storage for renewable energy syst	ems: Solar energy, Wind ene	ergy, Pumped		
hydro energy, fuel cells. Energy stor	age in Micro-grid and Smart	grid. Energy	10	
Management with storage systems	s, Battery SCADA, Increase	e of energy	10	
conversion efficiencies by introducing	energy storage.			
Unit 5				
MATLAB base Simulink modals: S	Simulation of energy storage sy	stems and its		
management, smart park, Electric Ve	hicle charging facility, HESS	in micro-grid	10	
and smart grid, microbial fuel cell, hyc	lrogen fuel cell and so on.			
Course outcomes:	ill be able to:			
1 Elaborate the concepts of vario	III de adle lo.			
2 Understand the concepts of electric	ctrical energy storage devices			
3. Discuss the concepts of hybrid	energy storage systems and mo	bile storage syst	em	
4. Analyze the operation of renew	vable energy systems	ene storage sjot	••••	
5. Apply the knowledge of design using MATLAB Simulink				
Question paper pattern:				
The question paper will have 10 quest	ions.			
9. Each full question carries 14 marks.				
10. Each full question will have sub question covering all topics under unit.				
The student will have to answer 5 full questions selecting one full question from each unit.				
Text Books:				
1. A.U. Ier-Gazarian, "Energy S Institution of Engineering and T	torage for Power Systems"	, Second Edit	ion, The	
2. "Energy Storage in Power Syste	ems" Wiley Publication. ISBN:	978-1-118-9713	0-7, Mar	
3. A. R. Pendse, "Energy Storage S	Science and Technology", SBS	Publishers & Di	stributors	

Pvt. Ltd., New Delhi

- 1. Electric Power Research Institute (USA), "Electricity Energy Storage Technology Options: A White Paper Primer on Applications, Costs, and Benefits" (1020676), December 2010.
- Paul Denholm, Erik Ela, Brendan Kirby and Michael Milligan, "The Role of Energy Storage with Renewable Electricity Generation", National Renewable Energy Laboratory (NREL) – A National Laboratory of the U.S. Department of Energy – Technical Report NREL/ TP6A2-47187,

TRANSMISSION AND DISTRIBUTION OF ELECTRICAL POWER SEMESTER-VII

Subject Code	21EEEEM709A	IA-Marks	30
Number of Lecture Hours/Week	3L	Exam-Marks	70
Total Number of Lecture Hours	45	Exam-Hours	03
	Credits -03		

Course-Objectives:

This course will enable student to:

- 1. Understand the concepts of electrical power transmission lines.
- 2. Understand the electrical design and mechanical design of the overhead lines.
- 3. Understand the performance of the overhead line insulators.
- 4. Understand the performance of the cables used in power transmission.
- 5. Understand the AC Distribution Systems.

Transmission line parameters: resistance, inductance and capacitance calculations - single phase and three phase lines, double circuit line, effect of earth on transmission line capacitance. 11Performance of transmission lines: representation of lines, classification of transmission lines, short transmission line, medium length transmission line (Nominal-T, Nominal- π , End condenser method), long transmission line, Ferranti Effect in transmission lines 11Unit 2: Mechanical Design of Overhead Lines Dverhead Line Insulators: Introduction, types of insulators, Potential distribution over a string of suspension insulators, Methods of equalizing the potential, testing of ensulators. Sag and Tension calculations with equal and unequal heights of towers- Effect of Wind and Ice on weight of Conductor, Calculation of string efficiency, 10
calculations - single phase and three phase lines, double circuit line, effect of earth on transmission line capacitance. Performance of transmission lines: representation of lines, classification of transmission lines, short transmission line, medium length transmission line (Nominal-T, Nominal- π , End condenser method), long transmission line, Ferranti Effect in transmission lines Unit 2: Mechanical Design of Overhead Lines Overhead Line Insulators: Introduction, types of insulators, Potential distribution over a string of suspension insulators, Methods of equalizing the potential, testing of nsulators. Sag and Tension calculations with equal and unequal heights of towers- Effect of Wind and Ice on weight of Conductor, Calculation of string efficiency,
on transmission line capacitance. Performance of transmission lines: representation of lines, classification of transmission lines, short transmission line, medium length transmission line (Nominal-T, Nominal- π , End condenser method), long transmission line, Ferranti Effect in transmission lines Unit 2: Mechanical Design of Overhead Lines Dverhead Line Insulators: Introduction, types of insulators, Potential distribution pover a string of suspension insulators, Methods of equalizing the potential, testing of nsulators. Sag and Tension calculations with equal and unequal heights of towers-Effect of Wind and Ice on weight of Conductor, Calculation of string efficiency,
Performance of transmission lines: representation of lines, classification of transmission lines, short transmission line, medium length transmission line (Nominal-T, Nominal- π , End condenser method), long transmission line, Ferranti Effect in transmission linesImage: Condense of transmission line, Ferranti Design of Overhead LinesUnit 2: Mechanical Design of Overhead Lines10Overhead Line Insulators: Introduction, types of insulators, Potential distribution over a string of suspension insulators, Methods of equalizing the potential, testing of nsulators. Sag and Tension calculations with equal and unequal heights of towers- Effect of Wind and Ice on weight of Conductor, Calculation of string efficiency,
transmission lines, short transmission line, medium length transmission line (Nominal-T, Nominal- π , End condenser method), long transmission line, Ferranti Effect in transmission linesImage: Condense International Condense International Condense International Condense International Conductor, types of insulators, Potential distribution Image: Conductor, Calculation of String efficiency, Image: Conductor Conductor, Calculation of String efficiency, Image: Conductor, Calculation of String efficiency, Image: Conductor Conductor, Calculation of String efficiency, Image: Conductor, Calculation of String efficiency, Image: Conductor Conductor, Calculation of String efficiency, Image: Conductor, Calculation Conductor, Ca
(Nominal-T, Nominal-π, End condenser method), long transmission line, Ferranti Effect in transmission lines Unit 2: Mechanical Design of Overhead Lines Overhead Line Insulators: Introduction, types of insulators, Potential distribution over a string of suspension insulators, Methods of equalizing the potential, testing of nsulators. Sag and Tension calculations with equal and unequal heights of towers- Effect of Wind and Ice on weight of Conductor, Calculation of string efficiency,
Effect in transmission lines Unit 2: Mechanical Design of Overhead Lines Unit 2: Mechanical Design of Overhead Lines 10 Overhead Line Insulators: Introduction, types of insulators, Potential distribution over a string of suspension insulators, Methods of equalizing the potential, testing of nsulators. Sag and Tension calculations with equal and unequal heights of towers-Effect of Wind and Ice on weight of Conductor, Calculation of string efficiency,
Unit 2: Mechanical Design of Overhead Lines10Overhead Line Insulators: Introduction, types of insulators, Potential distribution over a string of suspension insulators, Methods of equalizing the potential, testing of nsulators. Sag and Tension calculations with equal and unequal heights of towers- Effect of Wind and Ice on weight of Conductor, Calculation of string efficiency,10
Overhead Line Insulators: Introduction, types of insulators, Potential distribution10over a string of suspension insulators, Methods of equalizing the potential, testing of nsulators. Sag and Tension calculations with equal and unequal heights of towers- Effect of Wind and Ice on weight of Conductor, Calculation of string efficiency,
over a string of suspension insulators, Methods of equalizing the potential, testing of nsulators. Sag and Tension calculations with equal and unequal heights of towers- Effect of Wind and Ice on weight of Conductor, Calculation of string efficiency,
Insulators. Sag and Tension calculations with equal and unequal heights of towers- Effect of Wind and Ice on weight of Conductor, Calculation of string efficiency,
Effect of Wind and Ice on weight of Conductor, Calculation of string efficiency,
Capacitance grading and Static Shielding.
Unit 3: Corona and surge impedance
Corona: Introduction, disruptive critical voltage, corona loss, Factors affecting 07
corona loss
and methods of reducing corona loss, Disadvantages of corona, interference between
and Communication lines, surge impedance and SIL of long lines.
Unit 4: Underground Cables
Insulated Cables: Introduction, need for insulation to design of cables, insulating 09
naterials for cables, Extra fign voltage cables, grading of cables, insulation
insistance of a cable, Capacitance of a single core and three core cables, Overhead
Unit 5. Distribution Systems
A C Distribution Introduction AC distribution Single phase 2 phase 2 phase 4
AC Distribution: Introduction, AC distribution, Single phase, 5-phase, 5 phase 4 08
Distribution system losses Coincidence factor Contribution factor loss factor
Relationship between the load factor and loss factor – Numerical Problems
Course outcomes:
On completion of the course student will be able to:
6 Illustrate the basic concents of electrical power transmission lines and Describe various
types of electrical design of the overhead
7 Estimate various factors related to mechanical design of the overhead lines

- 8. Distinguish concept of corona and surge impedence.
- 9. Discuss the types of cables and their capacitance calculations.
- 10. Illustrate the basic concepts of ac distribution systems.

The question paper will have 10 questions.

11. Each full question carries 14 marks.

12. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

1. C.L. Wadhwa, Generation, Distribution and Utilization of Electrical Energy, 3rd Edition, New Age International, 2015.

2. A Text Book on Power System Engineering by M.L.Soni, P.V.Gupta, U.S.Bhatnagarand A. Chakrabarti, DhanpatRai& Co. Pvt. Ltd, 2016

3. Generation, Distribution and Utilization of Electric Energy by C.L.Wadhawa, New age International (P) Limited, Publishers, 3 rd edition.

- 4. C.L. Wadhwa, Electrical Power Systems, 7th Edition, New Age International, 2016.
- 5. D.P. Kothari and I.J. Nagrath, Power System Engineering-- Tata McGraw-Hill Pub. Co., New Delhi, 3rd Edition, 2019.

Course Structure for IV B. Tech I Semester Under the Regulations of SITE-21								
VII SEMESTER								
S. No	Course Category	Course Code	Course Title	L	Т	Р	С	
1	PE	21EEEP701X	Professional Elective-III	3	0	0	3	
2	PE	21EEEP702X	Professional Elective -IV	3	0	0	3	
3	PE	21EEEP703X	Professional Elective -V	3	0	0	3	
4	OE	21EEXXO704X	Open Elective -III	2	0	2	3	
5	OE	21EEXXO705X	Open Elective -IV	2	0	2	3	
6	H&SS	21EEXXO706X	Elective	3	0	0	3	
7	SAC/SC	21EEES7070	Design of Photovoltaic Systems	1	0	2	2	
8	SI	21EEEEI7080	Industrial/Research Internship (1-2 Months) after third year to be evaluated in VII semester	0	0	0	3	
TOTAL					0	6	23	
9	H/M		Honor/Minor courses(The hours distribution can be 3-0-2 or 3-1-0)	4	0	0	4	

Professional Elective-III

S.No.	Course Code	Course Title	L	Т	Р	С
1	21EEEP701A	Switched Mode Power Converters	3	0	0	3
2	21EEEP701B	Electric & Hybrid Vehicles	3	0	0	3
3	21EEEP701C	Artificial Intelligence Techniques	3	0	0	3

Professional Elective-IV

S.No.	Course Code	Course Title	L	Т	Р	С
1	21EEEP702A	Wind & Solar Energy Systems	3	0	0	3
2	21EEEP702B	Power Quality	3	0	0	3
3	21EEEP702C	Discrete Control Systems	3	0	0	3

Professional Elective-V

S.No.	Course Code	Course Title	L	Т	Р	С
1	21EEEEP703A	FACTS & Fundamentals of HVDC transmission systems.	3	0	0	3
2	21EEEEP703B	Smart Grid	3	0	0	3
3	21EEEP703C	Optimization Techniques	3	0	0	3

SWITCHED MODE POWER CONVERTERS				
Subject Code	SEMESTER-VII	IA Monka	20	
Subject Code: Number of Lecture Hours/week	2IEEEEP/UIA 3I	IA Marks Evom Morks	<u> </u>	
Total Number of Lecture Hours	<u>JL</u>		03	
Total Number of Lecture Hours	43	Exam nours	03	
Course Ohio dia a	Credits-03			
 Course Objectives: This course will enable the student: To understand the working, analianation To get the knowledge of operation control principles. To know the concept of SMPS, To understand about the concept Unit-1 Introduction to DC-DC Converter topologies, Basic Operation, Waveform principles.	lysis and modeling of diffe on of isolated bridge conve its principle operation and t of resonant converters. s: Review of Buck, Bo as, modes of operation-volt verter Basic Operation W	erent types of conve erters, voltage wav application. post, Buck-Boost age mode control	erters. eforms and	
principles. Push-pull and Forward converter, Basic Operation, Waveforms, modes of operation- Transformer design-voltage mode control principles. Unit – 2			Hours – 07	
Isolated Bridge Converters: Half and Full Bridge Converters- Basic Operation, Waveforms, modes of operation-voltage mode control principles. Fly back Converter - Basic Operation, Waveforms, modes of operationvoltage mode control principles.			Hours – 08	
Unit – 3 Switch mode power supply-I: Voltage Mode Control of SMPS, Loop gain and Stability Considerations, Shaping the Error Amplifier gain versus frequency characteristics, Error amplifier Transfer function, Transconductance Error amplifiers. Current Mode Control of SMPS, Current Mode Control Advantages, Current Mode versus Voltage Mode Control of SMPS – Current Mode Deficiencies - Slope Compensation.			Hours – 08	
Unit – 4				
Switch mode power supply-II: Model Modeling of non-ideal fly back conver- averaged model, State space averaging averaging and averaged switch modelin	ing of SMPS, Basic AC m ter, State Space Averaging g of non-ideal buck boost g, Modeling of pulse widtl	odeling Approach, g, basic state space converter, Circuit h modulator.	Hours – 12	
Unit – 5	D			
Resonant Converters: Introduction to Resonant Converters, Basic Resonant resonant switch converters, zero volta resonant DC Link inverters with zero integral half cycle converter.	to Resonant Converters, circuit concepts, load reso ge switching, clamped vo o voltage switching, High	Classification of onant converters, ltage topologies, h frequency link	Hours – 08	

On completion of the course student will be able to:

- 1. Illustrate the working, analysis, and modeling of different types of converters.
- 2. Develop the knowledge of operation of isolated bridge converters, voltage waveforms and control principles.
- 3. Apply the concept of SMPS, its principle operation and application.
- 4. Demonstrate the concept of resonant converters.

Question paper pattern:

- 1. This section will have 10 questions.
- 2. Each full question carries 14 marks.
- 3. Each full question will have sub question covering all topics under unit.
- The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. Ned Mohan, Power Electronics, JohnWiley, 3rdedition, 2011.
- 2. Billings K.H., Handbook of Switched Mode Power Supplies, McGraw Hill, 3rd edition, 2010.

- 1. Pressman A. I, Switching Power Supply Design, McGraw Hill, 3rdedition, 2009.
- 2. Nave M.J, Power Line Filter Design for Switched-Mode Power Supplies, Mark Nave Consultants, 2nd edition, 2010.

ELECTRIC AND HYBRID VEHICLES					
Subject Code	21FFFF701R	IA Morks	30		
Number of Lecture Hours/week	3L	Exam Marks	<u> </u>		
Total Number of Lecture Hours	45	Exam Hours	03		
	Credits _ 03				
Course Objectives:	Creatis – 05				
This course will enable student to :					
1. Understand working of hybrid	and electric vehicles, its pe	erformance and cha	aracteristics.		
2. Understand hybrid vehicle configuration and its components.					
3. Understand the electric vehicle drive systems.					
4. Understand the properties of er	4 Understand the properties of energy storage systems				
5. Understand different Energy m	anagement strategies				
Unit-1	0 0				
Introduction:					
Hybrid Electric Vehicles: History of	hybrid and electric vehi	cles, social and			
environmental importance of hybrid and	l electric vehicles.		Hours -08		
Conventional Vehicles: Basics of ve	hicle performance, vehic	le power source	110013 - 00		
characterization, transmission character	istics, and mathematical m	nodels to describe			
vehicle performance.					
Unit – 2					
Hybrid Electric Drive Trains:		· F			
Concept of Hybrid Electric Venicles (F	iev), Analysis of drive transition of hybrid	ains, Energy use	Hours – 10		
Architectures of HEV and their operation	aving potential of hydri	lu drive trains,			
types of HEV	ni model. I owel now Ana	iysis in different			
$\frac{\text{Unit} - 3}{\text{Unit} - 3}$					
Electric Drive Trains:					
Electric vehicle configuration, Architec	ture of electric drive train	, Configurations	H		
of electric drive trains based on transmi	ssion system and power so	ource. Single and	Hours – 08		
Multi-Motor drives, In wheel drives, rec	quirements of different elec	ctric motors used			
in EVs, Power-Torque-Speed characteri	stics, electric propulsion s	ystems.			
Unit – 4					
Energy Storage:		1			
Introduction to Energy Storage Require	elusis Evel Cell based on	lectric venicles,	Hours – 10		
its analysis Super Canacitor based ener	alysis, ruel Cell Dased elle	Elywheel based			
energy storage and its analysis Hybridi	gy storage and its analysis,	torage devices			
Unit – 5	Eation of afferent energy s	torage devices.			
Energy Management Strategies:					
Introduction to energy management stra	tegies used in hybrid and	electric vehicles,			
classification, comparison & imple	ementation issues of d	ifferent energy	Hours – 09		
management strategies. Functions of co	ontrol system in HEVs & I	EVs, Elementary			
control theory, Electronic control unit	, control area network, fu	zzy logic based			
control system.					
Course outcomes:					
On completion of the course student will	I be able to:				
1. Know working of hybrid and e	tion and its series & its perfo	rmance.			
2. Analyze hybrid vehicle configura	rive systems				
5. Understand the properties of a	Tive systems.				
4. Understand the properties of ener	gy storage systems.				
5. Apply unterent Energy managem	iem sualegies				

- 4. This section will have 10 questions.
- 5. Each full question carries 14 marks.
- 6. Each full question will have sub question covering all topics under unit.
- The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 4. C. Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.5. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management
- Strategies", Springer, 2015.

- 3. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.
- 4. T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016.

ARTIFICIAL INTELLIGENCE TECHNIQUES				
	SEMESTER-VII			
Subject Code	21EEEP701C	IA Marks	30	
Number of Lecture Hours/week	3 L	Exam Marks	70	
Total Number of Lecture Hours	45	Exam Hours	03	
	Credits – 03			
Course Objectives:				
This course will enable student to :				
1. Understand the basic intelligent	t controller concept			
2. Understand concepts of feed f	forward neural networks an	nd learning and		
understanding of feedback ne	ural networks.			
3. Understand and analyze the co	oncept of genetic algorithm	n.		
4. Understand the knowledge of	fuzzy logic control.			
5. Apply the knowledge of fuzzy	y logic control, genetic alg	orithm and neural		
network to the real problems.				
Unit-1				
INTRODUCTION TO INTELLIGENT	CONTROL: Introduction	and motivation.		
Approaches to intelligent control. Arc	chitecture for intelligent c	ontrol. Symbolic		
reasoning system, rule-based systems, the AI approach. Knowledge representation.				
Expert systems.				
Unit – 2				
ARTIFICIAL NEURAL NETWORKS				
Concept of Artificial Neural Networks,	, its basic mathematical me	odel, McCulloch-		
Pitts neuron model, simple perceptro	on, Adaline and Madalir	ne, Feed-forward	Hours – 12	
Multilayer Perceptron. Learning and 7	Training the neural netwo	ork. Introduction,		
derivation, algorithm, flowchart, limit	tation-Error Back propag	ation, Hopefield,		
Radial bases function				
Unit – 3				
GENETIC ALGORITHM				
Basic concept of Genetic algorithm and	detail algorithmic steps, a	djustment of free	Hours -08	
parameters. Solution of typical control j	problems using genetic alg	orithm. Concept	110015 - 00	
on some other search techniques like tal	bu search and ant-colony s	earch techniques		
for solving optimization problems				
Unit – 4				
FUZZY LOGIC SYSTEM				
Introduction to crisp sets and fuzzy sets	, basic fuzzy set operation	and approximate		
reasoning. Introduction to fuzzy log	gic modeling and control	ol. Fuzzification,	Hours – 08	
inferencing and defuzzification. Fuzzy	knowledge and rule bases.	Fuzzy modeling		
and control schemes for nonlinear syste	ems. Fuzzy logic control fo	or nonlinear time-		
delay system. Implementation of fuzzy	logic controller.			
Unit – 5				
APPLICATIONS	with Montel NI-ter 1	and Dungers I '	Hours – 09	
industrial applications to Genetic Alg	orithm, Neural Network	and Fuzzy Logic		
Control- case studies				

On completion of the course student will be :

- 1. Able to identify knowledge representations applied to artificial intelligence techniques
- 2. Able to model artificial neuron and identify its use in Perceptron models and back propagation algorithm to multilayer feed forward networks
- 3. Able to analyze concept of genetic algorithm.
- 4. Able to analyze fuzzy logic controller using MATLAB.
- 5. Able to analyze various applications of neural and fuzzy logic systems in electrical Engineering

Question paper pattern:

The question paper will have 10 questions.

- 1. Each full question carries 14 marks.
- 2. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. Simon Haykins, Neural Networks: A comprehensive Foundation, Pearson Edition, 2003.
- 2. T.J. Ross, Fuzzy logic with Fuzzy Applications, McGraw Hill Inc, 2011.
- 3. David E Goldberg, Genetic Algorithms. Wesley Publishing Company, 1989
- 4. John Yen and Reza Langari, Fuzzy logic Intelligence, Control, and Information, Pearson Education, Indian Edition, 2003.
- 5. Neural Network, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications S. Rajasekaran and G. A. VijayalakshmiPai, Prentice Hall India, 2013

- 1. M.T. Hagan, H. B. Demuth and M. Beale, Neural Network Design, Indian reprint, 2008.
- 2. Fredric M. Ham and IvicaKostanic, Principles of Neuro computing for science and Engineering, McGraw Hill, 2001.
- 3. N. K. Bose and P. Liang, Neural Network Fundamentals with Graphs, Algorithms, and Applications, Mc, Graw Hill, Inc. 1996.
- 4. Yung C. Shin and ChengyingXu, Intelligent System, Modeling, Optimization and Control, CRC Press, 2009.
- 5. N. K. Sinha and Madan M Gupta, Soft computing & Intelligent Systems, Theory & Applications, Indian Edition, Elsevier, 2007.
- 6. WitoldPedrycz, Fuzzy Control and Fuzzy Systems, Overseas Press, Indian Edition, 2008.

WIND AND SOLAR ENERGY SYSTEMS SEMESTER-VII				
Subject Code:	21EEEEP702A	IA Marks	30	
Number of Lecture Hours/week	3L	Exam Marks	70	
Total Number of Lecture Hours	45	Exam Hours	03	
Credits-03				
Course Objectives:				
This course will enable student to unde	rstand:			
1. The fundamental concepts of po	wer generation and gain	enough knowledge a	bout the	
wind and solar energy sources.				
2. The construction, principle of operation of various equipments used in power generation				
3. The key aspects in the design and operation of photovoltaic along with solar thermal				
power energy systems.				
4. The various factors affecting the power quality issues in integration of renewable energy				
resources.				
History of wind nower Indian and Cla	bal statistics. Wind phys	iog Potz limit Tin		
restory of which power, indian and Gio	od snaad statistics, wind pilys	hility distributions	Hound 07	
speed ratio, stall and pitch control, wind speed statistics-probability distributions,			nours – 07	
Unit – 2				
Wind generator topologies:				
Review of modern wind turbine tech	nologies Fixed and Va	riable speed wind		
turbings Induction Congreters, Doubly End Induction Congreters and their				
characteristics Permanent- Magnet Synchronous Generators Power electronics				
converters Generator-Converter configurations Converter Control				
Unit – 3				
Fundamentals of Solar Power:				
Introduction, solar radiation spectra, solar geometry, Earth Sun angles, observer				
Sun angles, solar day length, Estimation	n of solar energy availabi	lity.	Hours -10	
Technologies-Amorphous, mono cryst	alline, polycrystalline So	olar cells & panels,		
performance of solar cell, estimation of	power obtain from solar	power,		
Unit – 4	*	-		
Solar photovoltaic Systems				
solar panels PV systems, components o	f PV systems, performar	ice of PV systems,		
, concentrating PV systems, PV power plants, V-I characteristics of a PV cell, PV				
module, array, Power Electronic Conv	erters for Solar Systems,	Maximum Power		
Point Tracking (MPPT) algorithms (Hi	ll climbing method, Frac	tional Short Circuit		
Current). Converter Control, design of	PV systems, applications	of PV systems.		

Unit – 5				
Grid integrated Problems & Mitigation				
Overview of grid code technical requirements. Fault ride-through for wind farms,				
real and reactive power regulation, voltage and frequency operating limits, solar	Hours – 10			
PV and wind farm behavior during grid disturbances. Power quality issues. Power				
system interconnection experiences in the world.				
Course outcomes:				
On completion of the course student will be able to:				
1. Remember the energy scenario and the consequent growth of the power				
generation from renewable energy sources.				
2. Analyze the basic physics of wind and solar power generation.				
3. Apply the power electronic interfaces to the wind and solar generation.				
4. Define the issues related to the grid-integration of solar and wind energy systems.				
Question paper pattern:				
1. This section will have 10 questions.				
2. Each full question carries 14 marks.				
3. Each full question will have sub question covering all topics under unit.				
The student will have to answer 5 full questions selecting one full question from a	each unit.			
Text Books.				
1 T Ackermann "Wind Power in Power Systems" John Wiley and Sons I td	2005			
2 G M Masters "Renewable and Efficient Electric Power Systems" John Wild	2003. evand			
Sons 2004	cy and			
3 S. P. Sukhatme "Solar Energy: Principles of Thermal Collection and Storage	,,			
McGraw Hill 1984	,			
Reference Books:				
1. H. Siegfried and R. Waddington, "Grid integration of wind energy conversion	n systems"			
John Wiley and Sons Ltd., 2006.	10,000000			
2. G. N. Tiwari and M. K. Ghosal "Renewable Energy Applications" Narosa				
Publications, 2004.				
3. J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes". John				
Wiley & Sons, 1991.				
4. Bin Wu, Yongqiang Lang, NavidZargari, Samir Kouro, "Power Conversion and Control				
of Wind Energy Systems", John Wiley & Sons				

POWER QUALITY SEMESTER-VII				
Subject Code	21EEEEP702B	IA-Marks	30	
Number of Lecture Hours/Week	3L	Exam-Marks	70	
Total Number of Lecture Hours	45	Exam-Hours	03	
	Credits - 03	l.		
Course Objectives:				
This course will enable student to:				
7. Infer different types of power qua	ality phenomena.			
8. Understand voltage sags and inte	rruptions.			
9. Learn the about Transient over v	oltage.			
10. Distinguish between Harmonics	s and Transients.			
11.Know the power quality monitor	ring concepts and the usage of 1	neasuring instrum	nents.	
Unit 1: Terms & Definitions			Hours	
Terms & Definitions: General Classe	s of Power Quality Problems	Transients	09	
Long Duration Voltage Variations S	hort-Duration Voltage Variati	ons Voltage	07	
Imbalance Waveform Distortion Voltage Fluctuations Power Frequency				
Variations, Power Quality Terms	voluge Huetaanons, Fowel	riequency		
Unit 2: Voltage Sags & Interruption	S			
Sources of Sags and Interruptions	Estimating Voltage Sag	Performance	09	
Fundamental Principles of Protection.	Solutions at the End-User Leve	l. Evaluating	07	
the Economics of Different Ride-Through Alternatives Motor Starting Sags				
Utility System Fault-Clearing Issues.		unting Sugs,		
Unit 3: Transient Over Voltages				
Sources of Transient Over Voltages	s Principle of Over Voltage	e Protection	09	
Devices for Over Voltage Protection	n Utility Capacitor-Switching	Transients	07	
Utility System Lightning Protection	n Managing Ferro-resonance	Switching		
Transient Problems with Loads Comp	uter Tools for Transient Analys	sis		
Unit 4: Fundamentals of Harmonics	,			
Harmonic Distortion Voltage Versu	s Current Distortion Harmo	onics Versus	09	
Transients Power System Quantities 1	under Non-sinusoidal Condition	ns. Harmonic	0,7	
Indices. Harmonic Sources from Com	nercial Loads. Locating Harmo	onic Sources.		
System Response Characteristics Effects of Harmonic Distortion Inter-				
harmonics				
Unit 5: Power Quality Monitoring				
Monitoring Considerations. Historical	Perspective of Power Qualit	v Measuring	09	
Instruments. Power Quality Measure	ment Equipments. Assessme	nt of Power	01	
Quality Measurement Data, Applicati	ion of Intelligent Systems, Po	ower Quality		
Monitoring Standards.				
Course outcomes:		•		
On completion of the course student w	ill be able to:			
6. Differentiate between types of	power quality problems.			
7. Analyze power quality terms an	nd power quality standards.			
8. Explain the different tools to an	nalyze the transient analysis.			
9. Demonstrate the relationship be	etween Harmonics and Transie	nts.		
10. Elobarate the power quality mo	onitoring concepts and the usage	e of measuring in	struments	
Question paper pattern:				
The question paper will have 10 quest	ions.			
1. Each full question carries 14 marks.				
2. Each full question will have sub question covering all topics under unit.				
The student will have to answer 5 full questions selecting one full question from each unit.				
Text Books:				
1. Electrical Power Systems Qu	ality, Dugan R C, Mc Granagh	nan M F, Santoso	o S, and	
Beaty H W, Second Edition, McGraw–Hill, 2012, 3rd edition.

2. Electric power quality problems –M.H.J. Bollen IEEE series-Wiley India publications, 2011.

- 1. Power Quality Primer, Kennedy B W, First Edition, McGraw-Hill, 2000.
- 2. Understanding Power Quality Problems: Voltage Sags and Interruptions, Bollen M HJ, First Edition, IEEE Press; 2000.
- 3. Power System Harmonics, Arrillaga J and Watson N R, Second Edition, John Wiley & Sons, 2003.
- 4. Electric Power Quality control Techniques, W. E. Kazibwe and M. H. Sendaula, Van Nostrad Reinhold, New York.
- 5. Power Quality C. Shankaran, CRC Press, 2001
- 6. Harmonics and Power Systems Franciso C.DE LA Rosa–CRC Press (Taylor & Francis)
- 7. Power Quality in Power systems and Electrical Machines-Ewald F. fuchs, Mohammad
- A.S. Masoum–Elsevier.

DISCRET	TE CONTROL SYSTEM	IS	
Subject Code	21EEEEP702C	IA Marks	30
Number of Lecture Hours/week	31	Exam Marks	70
Total Number of Lecture Hours	45	Exam Mains	03
Total Number of Lecture Hours	Credits _ 03		05
Course Objectives:	Cituits – 05		
This course will enable student to :			
1 Obtain discrete representation	of LTI systems		
2 Analyze and find the solutions	for discrete-time systems		
3 Design and analyze digital con	trollers		
4 Design state feedback and outr	out feedback controllers		
5 Analyze the concents of feedback	ack control		
6 Understand the basic concepts	of fast output sampling		
Unit-1	of fast output sampling		
Discrete Representation of Continuou	is Systems		
Basics of Digital Control Systems, Disc	rete representation of con	tinuous systems.	
Sample and hold circuit. Mathematica	al Modeling of sample a	nd hold circuit.	Hours – 08
Effects of Sampling and Quantization	n. Choice of sampling f	Frequency, ZOH	
equivalent.	in enoise of sumpring i		
Unit -2			
Discrete System Analysis Z-Transform and Inverse Z Transform Transfer function. Pulse transfer function plane to z plane. Solution of Discrete timesystem.	for analyzing discrete tin on of closed loop systems. me systems. Time respons	ne systems. Pulse Mapping from s- be of discrete time	Hours – 08
Unit – 3			
Stability of Discrete Time System			
Stability analysis by Jury test. Stabili	ty analysis using bilinea	r transformation.	
Design of digital control system with	dead beat response. Prac	ctical issues with	
dead beat response design.			Hours -12
State Space Approach for discrete tin	ne systems		
State space models of discrete system	ms, State space analysis	. Controllability,	
reachability, Reconstructability and of	bservability analysis. Eff	ect of pole zero	
cancellation on the controllability & obs	servability.		
Unit – 4			
Design of Digital Control System			Hours – 04
Design of Discrete PID Controller, De	esign of discrete state fee	dback controller.	
Design of Discrete Observer, full order	and reduced order for LT	System.	
Unit – 5			
Discrete output feedback control			Hours – 05
Design of discrete output feedback of	control. Fast output sam	pling (FOS) and	
Periodic output feedback controller desi	ign for discrete time system	ms.	
Course outcomes:	ll be able to:		
On completion of the course student Wi	of LTL avatance		
1. Obtain discrete representation	of LTT systems.	a anata	
2. Analyze stability of open loop an	a ciosea loop alscrete-tim	e systems.	
3. Design and analyze digital contro	ollers.		
4. Design state feedback and output	reedback controllers.		
5. Analyze the concepts of feedback	control		

Question paper pattern:

- 1. This section will have 10 questions.
- 2. Each full question carries 14 marks.
- 3. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. K.Ogata,"Digital Control Engineering", Prentice Hall, EnglewoodCliffs, 1995.
- 2. B.C.Kuo, "DigitalControlSystem", Holt, RinehartandWinston, 1980.

- 3. G. F. Franklin, J. D. Powell and M. L. Workman, "Digital Control of Dynamic Systems", Addison-Wesley,1998.
- 4. M.Gopal, "DigitalControlEngineering", WileyEastern, 1988.

FACTS & FUNDAMENTALS OF HVDC TRANSMISSION SYSTEMS. SEMESTER-VII

	SEMESTER-VII		
Subject Code	21EEEP703A	IA-Marks	30
Number of Lecture Hours/Week	3L	Exam-Marks	70
Total Number of Lecture Hours	45	Exam-Hours	03
	Credits -		
Course-Objectives:			
The objectives of this course are to acc	juire knowledge on		
1. shunt compensation methods to i	improve stability and learn met	hod of shunt	
compensations using static VAR	compensators.		
2. various methods of compensation	n using series compensators		
3. operation of Unified Power Flow	V Controller (UPFC)		
4. 6-pulse and 12-pulse converter p	erformance.		
5. control strategies for HVDC network	work		
Unit 1			Hours
Introduction to FACTS: FACTS	concepts and general system	conditions:	
Power flow in AC systems, Relative in	nportance of controllable parar	neters, Basic	10
types of FACTS controllers, shunt a	and series controllers, Current	source and	10
Voltage source converters (qualitative	treatment only)		
Unit 2			
Static Shunt Compensators: Object	ctives of shunt compensation	, Methods of	
controllable VAR generation, Static	Var Compensator, its charact	eristics, TCR,	10
TSC, FC-TCR configurations, STA	TCOM, basic operating prin	ciple, control	14
approaches and characteristics			
Unit 3			
Static Series Compensators: Obj	ectives of series compensa	tor, variable	
impedance type of series compensate	ors, TCSC, TSSC-operating p	rinciples and	
control schemes, SSSC, Power Angl	le characteristics, Control ran	ge and VAR	
rating, Capability to provide reactive power compensation, external control			12
Combined Compensators: Introducti	on to Unified Power Flow Cor	ntroller, Basic	
operating principles, Conventional cor	trol capabilities, independent c	control of real	
and reactive power.			
Unit 4			
DC Power Transmission: Evolutio	on of AC and DC transmiss	sion systems,	
Comparison of HVDC and HVAC	Transmission systems, Types	of DC links,	
Components of a HVDC system,		C	14
Analysis of HVDC Converters:	Pulse number, choice	of converter	14
configurations, Analysis of Graetz	circuit with and without over	erlap, voltage	
waveforms, Analysis of two and three	e valve conduction mode, Con	iverter Bridge	
characteristics, inverter mode of opera	tion, voltage waveforms		
Unit 5	la control Convertor Control o	h ana atamiati a a	
HVDC Control: Principles of DC in	k control, Converter Control c	naracteristics,	14
Control merarchy Constant current Constant current Constant starting and starting of a dali	ontrol, CEA Control, Ilring an	gie control of	14
Course outcomes:	ik, Power control		
On completion of the course student w	ill be able to:		
1. Analyze and select a suitable FA	CTS controller for a given pow	ver flow conditio	m
2 Compare the characteristics of st	eatic VAR compensation and S		11
2. Compare the characteristics of st	and var compensation and S		
3. Compare H V DC and H V AC trai		1 (1)	
4. Analyze converter configuration	s for HVDC and FACTS and e	valuate the perfo	rmance

metrics.

5. Understand controllers for power flow control of dc links

Question paper pattern:

The question paper will have 10 questions.

- 1. Each full question carries 14 marks.
- 2. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. HVDC Power Transmission Systems Technology and System Interactions, K.R.Padiyar, New Age International Publishers, 2017, Third edition.
- 2. Direct Current Transmission, Kimbark, Wiley–Blackwell Publishers, Vol.1, 1971.
- 3. Understanding FACTS –Concepts and Technology of Flexible AC Transmission Systems, Narain G. Hingorani, Laszlo Gyugyi, Wiley India Pvt Ltd, 2011.

- 1. High Voltage Direct Current Transmission, Institution of Engineering and Technology, Jos Arrillaga, 1998,2nd edition.
- 2. Flexible AC Transmission Systems, Yong Hua Song, Allan T Johns, Institution of Engineering and Technology, 1999.

	SMART GRID SEMESTER-VII		
Subject Code	21EEEEP703B	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits-03		
 Course Objectives: This course will enable student to: Understand concept of smart grid Know smart metering techniques. Learn wide area measurement tech Understanding the problems associts solution through smart grid. 	and its advantages over c hniques. ciated with integration of	onventional grid. distributed generatio	on &
Unit-1			Hours
Introduction to Smart Grid : Evolution Definitions, Need of Smart Grid, Co Present development & International po	n of Electric Grid, Conce oncept of Robust & Se olicies in Smart Grid.	pt of Smart Grid, elf-Healing Grid,	08
Unit-2			
Smart Grid Applications-I : Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Smart Substations, Substation Automation. Feeder Automation			08
Unit-3			
Smart Grid Applications-II: Geograp Electronic Devices (IED) & their appli storage like Battery, SMES, Pumped Wide Area Measurement System (WAN	ohic Information System cation for monitoring & Hydro, Compressed Air MS), Phase Measurement	(GIS), Intelligent protection, Smart Energy Storage, Unit(PMU).	08
Unit-4			
Micro Grid Technology : Concept of micro-grid, need & applications of micro- grid, Formation of micro-grid, Issues of interconnection, Protection & control of micro-grid, Plastic & Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel-cells, micro- turbines, Captive power plants, Integration of renewable energy sources.			10
Unit-5			
Regulations and Market Models for Grid B2G, Vehicle to Grid V2G, Sola Tariff Design, Time of the day prici Consumer privacy and data protection, analysis of smart grid projects.	Smart Grid : Net Mete r to Grid, Micro grid De ng (TOD), Time of use , consumer engagement e	ring, Building to emand Response, e pricing (TOU), etc. Costs benefit	11

On completion of the course student will be able to:

- 1. Discriminate smart grid & conventional grid.
- 2. Apply smart metering concepts to industrial and commercial installations.
- 3. Formulate solutions in the areas of smart substations, distributed generation and wide area measurements.
- 4. Analyze the concept of micro grid and solar cells
- 5. Estimate smart grid solutions using modern communication technologies.

Question paper pattern:

The question paper will have 10 questions.

- 1. Each full question carries 14marks.
- 2. Each full question will have sub question covering all topics underunit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. Ali Keyhani, "Design of smart power grid renewable energy systems", Wiley IEEE, 2011.
- 2. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRCPress, 200
- 3. JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, "Smart Grid: Technologyand Applications", Wiley2012

- 1. Stuart Borlas'e, "Smart Grid: Infrastructure, Technology and solutions" CRC Press.
- 2. A. G. Phadke, "Synchronized Phasor Measurement and their Applications", Springer.

OPTIM	ZATION TECHNIQUI	ES	
Subject Code	21EEEEP703C	IA Marks	30
Number of Lecture Hours/week	3L	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits -03		
Course Objectives:			
This course will enable student to:			
1. Explain the objective and constra	aint functions in terms of	design variables, an	d then state
the optimization problem.			
2. Solve single variable and mu	lti variable optimization	problems with a	nd without
constraints.			
3. Explain linear programming tec	chnique to an optimization	on problem, slack a	and surplus
variables, by using Simplex metric	100.	ad an associated	and define
4. Explain nonlinear programming	tions for optimization pro	blome	and define
5 Discuss evolutionary programmi	ng techniques	obienns.	
Unit 1: Introduction and Classical O	ng techniques.		Hours
Statement of an Optimization prob	olem design vector d	esign constraints	liouis
constraint surface, objective function, of	biective function surface	es. classification of	00
Optimization problems.		.,	08
Unit 2: Classical Optimization Techn	iques		
Single variable Optimization, multi variable Optimization without constraints,			
necessary and sufficient conditions for minimum/maximum, multivariable			
Optimization with equality constraints. Solution by method of Lagrange			
multipliers, multivariable Optimization	n with inequality constrai	nts, Kuhn, Tucker	
conditions.			
Unit 3: Linear Programming		C 11	
Standard form of a linear progra	amming problem, ge	ometry of linear	
programming problems, definitions an	d theorems, solution of	a system of linear	90
motivation to the simpley method	simpley electric system	uslity in Linear	00
Programming Dual Simplex method	, simplex algorithm, L	Juanty III Linear	
Unit 4: Nonlinear Programming			
Unconstrained cases One dimension	nal minimization method	ds. Classification	
Fibonacci method and Ouadratic in	terpolation method. U	nivariate method.	
Powell's method and steepest descent n	nethod.		08
Constrained cases, Characteristics of a	constrained problem, Cl	assification, Basic	00
approach of Penalty Function method;	Basic approaches of Int	erior and Exterior	
penalty function methods. Introduction	to convex Programming	Problem.	
Unit 5: Introduction to Evolutionary	Methods		
Evolutionary programming methods,	Introduction to Genetic	Algorithms (GA)-	
Control parameters, Number of	generation, population	size, selection,	10
reproduction, crossover and mutation, (Operator selection criteria	, Simple mapping	13
of objective function to fitness function	, constraints, Genetic algo	orithm steps,	
Stopping criteria –Simple examples.			

On completion of the course student will be able to:

- 1. State and formulate the optimization problem, without and with constraints, by using design variables from an engineering design problem.
- 2. Apply classical optimization techniques to minimize or maximize a multi-variable objective function, without or with constraints, and arrive at an optimal solution.
- 3. Formulate a mathematical model and apply linear programming technique by using Simplex method. Also extend the concept of dual Simplex method for optimal solutions.
- **4.** Apply gradient and non-gradient methods to nonlinear optimization problems.
- 5. Apply interior or exterior penalty functions for the constraints to derive the optimal solutions.

Question paper pattern:

The question paper will have 10 questions.

- 1. Each full question carries 14 marks.
- 2. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. "Engineering optimization: Theory and practice"-by S. S. Rao, New Age International (P) Limited, 3rd edition, 1998.
- 2. Soft Computing with Matlab Programming by N. P. Padhy & S.P. Simson, Oxford University Press 2015

- 1. "Optimization methods in operations Research and Systems Analysis" by K.V. Mital and C. Mohan, New Age International (P) Limited, Publishers, 3rd edition, 1996.
- 2. Genetic Algorithms in search, optimization, and Machine Learning by Davi E. Goldberg, ISBN: 978-81-7758-829-3, Pearson by Dorling Kindersley (India) Pvt Ltd.
- 3. "Operations Research: An Introduction" by H. A. Taha, PHI Pvt. Ltd., 6th edition.
- 4. Linear Programming by G. Hadley.

Design of Photovoltaic Systems					
SEMESTER-VII					
Subject Code	21EEEES7070	IA-Marks	00		
Number of Lecture Hours/Week	2L	Exam-Marks	50		
Total Number of Lecture Hours	15	Exam-Hours	02		
Credits _02					

Course Objectives:

This course will enable student to :

- 1. Understand the fundamentals of Photovoltaic systems.
- 2. Know various technologies used in the Photovoltaic systems.
- 3. Know various methods used to improve power track in the Photovoltaic systems.
- 4. Know the connectivity of battery devices using in PV system.
- 5. Understand the implementation of PV system to Grid.

All the following topics are to be discussed

- 1. Basics Characteristics of Photovoltaic (PV) cell
- 2. Series Interconnections of PV cell
- 3. Parallel Interconnections of PV cell
- 4. Energy from sun and Incident energy estimation for different locations
- 5. Sizing of PV Cell
- 6. Maximum Power Point Tracking (MPPT) using P&O Algorithms
- 7. Maximum Power Point Tracking (MPPT) Using IC Algorithms
- 8. Maximum Power Point Tracking (MPPT) Using Fuzzy Logic Algorithms
- 9. PV and Battery Interfaces
- 10. PV and Grid Interfaces

Course Outcomes:

On completion of the course student will be able to:

- 1. Understand the fundamentals of Photovoltaic systems.
- 2. Know various technologies used in the Photovoltaic systems.
- 3. Know various methods used to improve power track in the Photovoltaic systems.
- 4. Learn the connectivity of battery devices to the PV system.
- 5. Learn the process of cooling and maintenance of the system.
- 6. Understand the implementation of PV system to Grid.

Books and references:

- 1. Chenming, H. and White, R.M., Solar Cells from B to Advanced Systems, McGraw Hill Book Co 1983
- 2. Ruschenbach, HS, Solar Cell Array Design Hand Varmostrand, Reinhold, NY, 1980
- 3. Proceedings of IEEE Photovoltaics Specialists Conferences, Solar Energy Journal.

Course structure for Electrical & Electronics Engineering Honors (for EEE Students)

IV B. Tech I Semester:

S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21EEEH709A	EHV AC Transmission	3	1	0	4
2	21EEEEH709B	Line Commutated & Active	3	1	0	4
		Rectifiers				
3	21EEEH709C	Electrical Distribution Systems	3	1	0	4
4	21EEEH709D	Power Systems Dynamics & Stability	3	1	0	4

EXTRA HIGH VOLTAGE AC TRANSMISSION SEMESTER-VII			
Subject Code	21EEEEH709A	IA-Marks	30
Number of Lecture Hours/Week	3L	Exam-Marks	70
Total Number of Lecture Hours	45	Exam-Hours	03
	Credits-04		
Course-Objectives:			
This course will enable student to:			
1. To calculate the transmission lin	e parameters.		
2. To calculate the field effects on	EHV and UHV AC lines.		
3. To have knowledge of corona, R	I and audible noise in EHV and	l UHV lines.	
4. To have knowledge of voltage c	ontrol in EHV and UHV transm	ission systems.	
5. To have knowledge of various re	eactive power compensating sys	stems in EHV lin	es.
Unit 1	1 1 0 7		Hours
EHVAC Transmission Paramet	ers:		10015
line trends and preliminary aspects	standard transmission voltage	pes – power	10
handling capacities and line losses	– mechanical aspects. Calcul	ation of line	
resistance and inductance: resistance	of conductors, temperature rise	of conductor	
and current carrying capacity. Prope	rties of bundled conductors an	nd geometric	
mean radius of bundle, inductance o	f two conductor lines and mu	lti conductor	
lines, Maxwell's coefficient matrix. I	Line capacitance calculation. ca	apacitance of	
two conductor line, and capacitance of	f multi conductor lines, potentia	l coefficients	
for bundled conductor lines, sequ	ence inductances and capacity	citances and	
diagonalization.			
Unit 2			
Voltage Gradient on conductors:			9
Calculation of electro static field of A	C lines - Effect of high electros	static field on	
biological organisms and human bein	gs. Surface voltage Gradient or	n conductors,	
surface gradient on two conductor	bundle and cosine law, maxing	mum surface	
voltage gradient of bundle with more t	han 3 sub conductors, Mangolt	formula.	
Unit 3			
Corona : Corona in EHV lines – cor	ona loss formulae – attenuation	n of traveling	8
waves due to corona –Audio noise d	lue to corona, its generation, c	haracteristics	
and limits, measurement of audio nois	е.		
Unit 4	D 11	11 1	
Power Frequency voltage control :	Problems at power frequency	, generalized	9
constants, No load voltage conditions	and charging currents, voltage	control using	
synchronous condenser, cascade con	nection of components : Shu	nt and series	
Compensation, sub synchronous resona	ance in series – capacitor compo	ensated fines	
Unit 5	u Introduction SVC schemes I	Iamania	0
inicated into network by TCP design	of filters for suppressing hermo	nice injected	9
into the system Introduction to STAT	COM	mes mjected	
Courseoutcomes.	CO1VI.		
Oncompletionofthecoursestudentwillb	eableto:		
1. Calculate the transmission line para	ameters.		
2. Calculate the field effects on EHV	and UHV AC lines.		
3. Determine the corona, RI and audit	ble noise in EHV and UHV lines.		
4. Analyze voltage control and compe	ensation problems in EHV and UH	V transmission sys	stems.
5. Understand reactive power compen	sation using SVC and TCR		

Question paper pattern:

The question paper will have 10 questions.

13. Each full question carries 14 marks.

14. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. Rakesh Das Begamudre, "Extra High Voltage AC Transmission Engineering", Fourth Edition New Age International publishers,
- 2. EHV Transmission line reference book Edison Electric Institute

LINE COMMUTATED AND ACTIVE RECTIFIERS				
Subject Code	SEMESTER-VII	IA Monlea	20	
Subject Code:	21EEEEH709B		<u> </u>	
Number of Lecture Hours/week	3L	Exam Marks	/0	
Total Number of Lecture Hours	45	Exam Hours	03	
	Credits – 04			
Course Objectives:				
This course will enable student to:				
1. Analyze the control rectifier ci	rcuits			
2. Describe the operation of line	commutated rectifiers and	multipulse converte	ers	
3. Understand the operation of bo	post converters			
4. Illustrate the operation of fly b	ack converters			
Unit-1				
Thyristor rectifiers with passive filter	ring			
Half-wave thyristor rectifier with RL and	nd RC loads; 1-phase thyris	stor rectifier with	H 00	
L and LC filter; 3-phase thyristor rect	ifier with L and LC filter	; continuous and	Hours – 08	
discontinuous conduction, input current	waveshape			
Unit – 2				
Multi-Pulse converter				
Review of transformer phase shifting generation of 6-phase ac voltage from 3- Hours -08				
phase ac 6- pulse converter and 12-pulse converters with inductive loads steady				
state analysis, commutation overlap, notches during commutation.				
Unit – 3				
Single-phase ac-dc single-switch boost converter				
Review of dc-dc boost converter, power	Review of dc-dc boost converter, power circuit of single-switch ac-dc converter. $Hours - 08$			
steady state analysis, unity power factor	operation, closed-loop con	ntrol structure.		
Unit – 4				
Ac-dc bidirectional boost converter				
Review of 1-phase inverter and 3-phase	e inverter, power circuits o	of 1-phase and 3-	11	
phase ac-dc boost converter, steady stat	e analysis, operation at lead	ding, lagging and	Hours – 08	
unity power factors. Rectification and	regenerating modes. Phase	or diagrams,		
closed-loop control structure.				
Unit – 5				
Isolated single-phase ac-dc flyback co	onverter			
Dc-DC fly back converter, output v	voltage as a function of	duty ratio and	Hours – 13	
transformer turns ratio. Power circuit	of ac-dc flyback conver	ter, steady state		
analysis, unity power factor operation, o	closed loop control structur	e.		
Course outcomes:				
On completion of the course student wi	ll be able to:			
1. Analyze the control rectifier ci	rcuits			
2. Understand the operation of lin	ne commutated rectifiers ar	nd multipulse conv	erters	
3. Describe the operation of boos	t converters			
4. Illustrate the operation of fly b	ack converters			

Question paper pattern:

- 1. This section will have 10 questions.
- 2. Each full question carries 14 marks.
- 3. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. L. Umanand, "Power Electronics: Essentials and Applications", Wiley India, 2009.
- 2. G. De, "Principles of Thyristorised Converters", Oxford & IBH Publishing Co, 1988.
- 3. J.G. Kassakian, M. F. Schlecht and G. C. Verghese, "Principles of Power Electronics", Addison- Wesley, 1991.
- 4. Abraham I.Press man, "Switching Power Supply Design"

- 1. N. Mohan and T. M. Undeland, "Power Electronics: Converters, Applications and Design", John Wiley & Sons, 2007.
- 2. R. W. Erickson and D. Maksimovic, "Fundamentals of Power Electronics", Springer Science & Business Media, 2001.

ELECTRICAL DISTRIBUTION SYSTEMS			
Subject Code	SEMIESTER-VII	IA Montra	20
Subject Code Number of Lecture Hours/Week	31	Fyom-Morks	70
Total Number of Lecture Hours	<u> </u>	Exam-Hours	03
	Credits -04	L'Adm-Hours	00
Course-Objectives:			
This course will enable student to:			
1. To learn different factors of dist	ribution system.		
2. To learn and design aspects of the	ne substations and distribution s	ystems.	
3. To learn the concepts of voltage	drop and power loss.		
4. To learn the distribution system	protection and its coordination.		
5. To learn the effect of compensat	ion for power factor improvement	ent.	
6. To learn the effect of voltage co	ntrol on distribution system.		
Unit 1			Hours
General Concepts			07
Introduction to distribution systems.	Distribution system losses	Coincidence	07
factor. Contribution factor, loss factor	: Relationship between the loa	d factor and	
loss factor. Numerical Problems.	Load Modeling and Chara	acteristics .	
Classification and characteristics of lo	ads (Residential - commercial -	Agricultural	
and Industrial).	·	0	
Unit 2			
Substations			10
Selection for location of substations -	Rating of distribution substation	n, Service area	
with 'n' primary feeders, K- Factors -	Benefits and methods of optim	nal location of	
substations. Distribution Feeders Design Considerations of distribution feeders:			
Radial and loop types of primary feeders, Voltage levels, Feeder loading - Basic			
design practice of the secondary distrib	oution system.		
Unit 3			
System Analysis			08
Voltage drop and power, loss calculat	ions: Derivation for voltage dro	op and power	
loss in lines, Uniformly distributed I	oads and non-uniformly distri	buted loads ,	
I hree phase balanced primary lines, an	nd Non three phase balanced pri	imary lines	
Distortion			10
Chiestives of distribution system	materian Time symmetry	amatanistica	10
Protective devices: Principle of on	protection, Time current ch	laracteristics,	
sectionalized and circuit breakers	Farth leakage circuit breaker	s Protection	
sectionalized and circuit breakers, Earth leakage circuit breakers, Protection			
Coordination of protective devices			
General coordination procedure Va	arious types of co-ordinated	operation of	
protective devices – Residual Current	Circuit Breaker.	-r	

Unit 5	
Compensation for Power Factor Improvement	10
Capacitive compensation for power factor control, Different types of power	
capacitors, shunt and series capacitors, Effect of shunt capacitors (Fixed and	
switched), Power factor correction, Capacitor allocation, Economic justification,	
Procedure to determine the best capacitor location.	
Voltage Control	
Equipment for voltage control, Effect of series capacitors, Effect of AVB/AVR,	
Line drop Compensation.	
Course outcomes:	
On completion of the course student will be able to:	
 Discriminate various factors of distribution system - load modelling and characte loads. 	ristic of
2. Know the concept of design considerations of substation and feeders.	
3. Determine the voltage drop and power loss for different types of distribution load	ds.
4. Analyse the protection and its coordination for distribution systems.	r
5. Analyse the effect of compensation for p.f improvement and voltage improvement	nt.
Question paper pattern:	
The question paper will have 10 questions.	
1. Each full question carries 14 marks.	
2. Each full question will have sub question covering all topics under unit.	
The student will have to answer 5 full questions selecting one full question from each	unit.
Text Books:	
 "Electric Power Distribution system - Engineering" – by Turan Gonen - Mc - 2nd edition - 2008 	:Graw–hill
Reference Books:	
1. Electrical Distribution Systems by Dale R.Patrick and Stephen W.Fardo - CRC p	oress - 2
nd edition. 2. 2 Electric Device Distribution , by A.C. Dahla, Tata McCraw, bill Dahlishing Ca	
2. 2 Electric Power Distribution – by A.S. Pabla - Tata McGraw–nill Publishing Conthe edition - 1997.	mpany - 4

3. Electrical Power Distribution Systems by V.Kamaraju - Right Publishers.

POWER SYSTEMS DYNAMICS AND STABILTY SEMESTED VII			
Subject Code	21EEEEH709D	IA-Marks	30
Number of Lecture Hours/Week	<u>3L</u>	Exam-Marks	70
Total Number of Lecture Hours	45	Exam-Hours	03
	Credits -04		
Course-Objectives:			
The objectives of this course is to acqu	ire knowledge on		
1. Model of synchronous machines.			
2. Stability studies of synchronous ma	achines.		
3. Solution method of transient stabili	ty.		
4. Different effects of stability on pow	ver system		
5. Effect of different excitation system	ns.		
Unit 1			Hours
System Dynamics:			
Synchronous machine model in state	e space from computer repr	esentation for	07
excitation and governor system, model	ling of loads and induction ma	achines.	
Unit 2			
steady state stability:			
Steady state stability limit, Dynamics	Stability limit, Dynamic sta	bility analysis	10
State space representation of synchron	ous machine connected to inf	finite bus-time	10
response, Stability by Eigen value appr	roach		
Unit 3			
Digital Simulation of Transient Stab	ility:	1, , 1	
Swing equation machine equations,	Representation of loads, A	Iternate cycle	10
solution method, Direct method of sol	ution, Solution Techniques: N	Iodified Euler	
Inethod, Runge Kutta method, Concept	t of multi machine stability		
Efforts on Stability			
Effect of governor action and excite or	nower system stability effect	of saturation	08
saliency & automatic voltage regulator	s on stability	or saturation,	00
Unit 5	s on staonity.		
Excitation Systems			
Rotating Self-excited Exciter with dire	ect acting Rheostatic type volt	age regulator.	
Rotating main and Pilot Exciters with	Indirect Acting, Rheostatic	Type Voltage	10
Regulator, Rotating Main Exciter,	Rotating Amplifier and S	tatic Voltage	-
Regulator, Static excitation scheme, Br	rushless excitation system	0	

The student should be able to

- 1. Determine the model of synchronous machines.
- 2. Know the stability studies of synchronous machines.
- 3. Get the knowledge of solution methods of transient stability.
- 4. Analyze the different effects of power system
- 5. Know the effect of different excitation systems in power systems.

Question paper pattern:

The question paper will have 10 questions.

- 1. Each full question carries 14 marks.
- 2. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. Power System Stability by Kimbark Vol. I&II, III, Willey.
- 2. Power System control and stability by Anderson and Fund, IEEE Press.

- 1. Power systems stability and control by PRABHA KUNDUR, TMH.
- 2. Computer Applications to Power Systems-Glenn.W.Stagg & Ahmed. H.El.Abiad, TMH.
- 3. Computer Applications to Power Systems M.A.Pai, TMH.
- 4. Power Systems Analysis & Stability S.S. Vadhera Khanna Publishers.

Course structure for Electrical & Electronics Engineering Minors to other Departments

S. No	Subject code	Name of the Subject	L	Т	Р	С
1	21XXEEM709A	Fundamentals of Electrical	3	1	0	4
		Power Transmission &				
		Distribution				
2	21XXEEM709B	Fundamentals of Utilization of	3	1	0	4
		Electrical Energy				
3	21XXEEM709C	Fundamentals of Electrical	3	1	0	4
		Safety				

IV B. Tech I Semester:

TRANSMISSION AND DISTRIBUTION OF ELECTRICAL POWER					
	SEMESTER-VII		-		
Subject Code	21EEEEM709A	IA-Marks	30		
Number of Lecture Hours/Week	<u>3L</u>	Exam-Marks	70		
Total Number of Lecture Hours	45	Exam-Hours	03		
	Credits -03				
Course-Objectives:					
This course will enable student to:					
1. Understand the concepts of electri	cal power transmission lines.				
2. Understand the electrical design a	and mechanical design of the ov	erhead lines.			
3. Understand the performance of th	e overhead line insulators.				
4. Understand the performance of th	e cables used in power transmis	ssion.			
5. Understand the AC Distribution S	Systems.				
Unit 1: Electrical Design of Overhea	d lines		hours		
Transmission line parameters:	resistance, inductance and	capacitance	11		
calculations - single phase and three ph	nase lines, double circuit line, e	effect of earth			
on transmission line capacitance.					
Performance of transmission lines	: representation of lines, cla	ssification of			
transmission lines, short transmissio	n line, medium length trans	mission line			
(Nominal-T, Nominal- π , End condenser method), long transmission line, Ferranti					
Effect in transmission lines					
Unit 2: Mechanical Design of Overhead Lines					
Overhead Line Insulators: Introduction	on, types of insulators, Potentia	al distribution	10		
over a string of suspension insulators, Methods of equalizing the potential, testing of					
insulators. Sag and Tension calculation	s with equal and unequal heigh	nts of towers-			
Effect of Wind and Ice on weight of Conductor, Calculation of string efficiency,					
Capacitance grading and Static Shieldin	.g.				
Unit 3: Corona and surge impedance					
Corona: Introduction, disruptive critica	al voltage, corona loss, Factors	affecting	07		
corona loss					
and methods of reducing corona loss, D	isadvantages of corona, interfer	rence between			
power					
and Communication lines, surge impeda	ance and SIL of long lines.				
Unit 4: Underground Cables					
Insulated Cables: Introduction, need f	or insulation to design of cables	s, insulating	09		
materials for cables, Extra high voltage	cables, grading of cables, insula	ation			
resistance of a cable, Capacitance of a s	ingle core and three core cables	, Overhead			
lines versus underground cables, types of	of cables.				
Unit 5: Distribution Systems					
AC Distribution: Introduction, AC dis	tribution, Single phase, 3-phase	e, 3 phase 4	08		
wire system, bus bar arrangement, Selec	tion of site and layout of substa	tion.			
Distribution system losses – Coincidenc	e factor – Contribution factor –	loss factor –			
Relationship between the load factor and	d loss factor – Numerical Proble	ems			

On completion of the course student will be able to:

- 1. Illustrate the basic concepts of electrical power transmission lines and Describe various types of electrical design of the overhead.
- 2. Estimate various factors related to mechanical design of the overhead lines.
- 3. Distinguish concept of corona and surge impedence.
- 4. Discuss the types of cables and their capacitance calculations.
- 5. Illustrate the basic concepts of ac distribution systems.

Question paper pattern:

- The question paper will have 10 questions.
- 1. Each full question carries 14 marks.
- 2. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

1. C.L. Wadhwa, Generation, Distribution and Utilization of Electrical Energy, 3rd Edition, New Age International, 2015.

2. A Text Book on Power System Engineering by M.L.Soni, P.V.Gupta, U.S.Bhatnagarand A. Chakrabarti, DhanpatRai& Co. Pvt. Ltd, 2016

3. Generation, Distribution and Utilization of Electric Energy by C.L.Wadhawa, New age International (P) Limited, Publishers, 3 rd edition.

Reference Books:

1. C.L. Wadhwa, Electrical Power Systems, 7th Edition, New Age International, 2016.

2. D.P. Kothari and I.J. Nagrath, Power System Engineering-- Tata McGraw-Hill Pub. Co., New Delhi, 3rd Edition, 2019.

FUNDAMENTALS OF UTILIZATION OF ELECTRICAL ENERGY					
SEMESTER- VII					
Subject Code	21XXEEM709B	IA Marks	30		
Number of Lecture Hours/week	3L	Exam Marks	70		
Total Number of Lecture Hours	45	Exam Hours	03		
	Credits – 03				
Course Objectives:					
This course will enable student to :					
1. Study the basic principles of illur	nination and its measuren	nents and to design	the different		
types lighting systems.					
2. Understand the operating principl	es and characteristics of	various motors wi	th respect to		
speed, temperature and loading con	nditions.				
3. Acquaint with the different types of	of heating welding techniq	ues.			
4. Acquaint with the different types of	of welding techniques				
5. Calculation of braking, acceleratio	n and other related parame	eters.			
Unit-1					
Illumination	T (11)				
Introduction, terms used in illumination–Laws of illumination–Sources of light.					
Discharge lamps, MV and SV lamps – Comparison between tungsten filament Hours –1					
lighting and flood lighting LED lighting	α	pes and design of			
Init – 2	<u>.</u>				
Selection of Motors					
Choice of motor type of electric driv	ves Temperature rise Ty	vnes of industrial			
loads-continuous-Intermittent and variable loads-Load equalization. Introduction			Hours – 08		
to energy efficient motors.					
Unit – 3					
Electric Heating					
Advantages and methods of electric heating–Resistance heating, induction heating					
and dielectric heating.		-			
Unit – 4					
Electric Welding			Hound 10		
Electric welding-Resistance and ar	c welding-Electric weld	ding equipment-	nours -10		
Comparison between AC and DC Weld	ling				
Unit – 5					
Electric Traction					
System of electric traction and track electrification- Review of existing electric			Hours –09		
traction systems in India- Special fea	tures of traction motor-S	peed-time curves			
for different services.					

On completion of the course student will be able to:

- 1. Understand various levels of illuminosity produced by different illuminating sources design different lighting systems by taking inputs and constraints in view.
- 2. Identify a suitable motor for electric drives and industrial applications
- 3. Identify most appropriate heating and for suitable applications.
- 4. Identify most appropriate welding techniques for suitable applications.
- 5. Determine the speed/time characteristics of different types of traction systems

Text Books:

- 1. Utilization of Electric Energy by E. Openshaw Taylor, Orient Longman.
- 2. Art & Science of Utilization of electrical Energy by Partab, DhanpatRai&Sons.
- 3. "Thermal energy storage systems and applications"-by Ibrahim Dincer and Mark A.Rosen. John Wiley and Sons 2002.

- 1. Utilization of Electrical Power including Electric drives and Electric traction by N.V.Suryanarayana, New Age International (P) Limited, Publishers, 1996.
- 2. Generation, Distribution and Utilization of electrical Energy by C.L. Wadhwa, New Age International(P)Limited, Publishers, 1997.

FUNDAMENTALS OF ELECTRICAL SAFETY				
	SEMESTER-VII			
Subject Code	21XXEEM709C	IA-Marks	30	
Number of Lecture Hours/ week	3L 45	Exam-Marks	03	
Total Number of Lecture Hours	Credits -04	Exam-nours	03	
Course-Objectives:				
This course will enable student to:				
1. Know about Electrical Safety, ef	fects of Shocks and their Preve	ntion.		
2. Summarize the Safety aspects du	ring Installation of Plant and E	quipment.		
3. Describe the electrical safety in r	esidential, commercial and agr	icultural installa	tions.	
4. Describe the various Electrical S	afety in Hazardous Areas, Equi	ipment Earthing	and	
System Neutral Earthing.		1		
5. State the electrical systems safety	v management and IE rules.			
Unit 1			Hours	
INTRODUCTION TO ELECTRIC	CAL SAFETY, SHOCKS A	ND THEIR	nours	
PREVENTION:				
Primary and secondary electrical show	cks, possibilities of getting ele	ctrical shock	10	
and its severity, medical analysis of el	lectric shocks and its effects, s	hocks due to	10	
flash/ Spark over's, prevention of s	hocks, safety precautions aga	ainst contact		
shocks, flash shocks, burns, residential	buildings and shops.			
Unit 2				
SAFETY DURING INSTALLATIO	N OF PLANT AND EQUIPM	AENT:		
Introduction, preliminary preparations, preconditions for start of installation work,				
personal protective equipment for er	ection personnel, installation of	of a large oil	10	
immersed power transformer, installation of outdoor switchyard equipment, safety				
resistance measurement of rotating machines				
Unit 3	chines.			
ELECTRICAL SAFETY IN COMM	IERCIAL STALLATIONS:			
Wiring and fitting – Domestic appliances water tap giving shock, shock from wet				
wall , fan firing shock, multi-storied building, Temporary installations , Agricultural			10	
pump installation, Do's and Don'ts f	for safety in the use of dome	stic electrical		
appliances.				
Unit 4				
EQUIPMENT EARTHING AND SY	YSTEM NEUTRAL EARTH	ING:		
Introduction, Distinction between sys	stem grounding and Equipmen	nt Grounding,		
Equipment Earthing, Functional Requirement of earthing system, description of a		escription of a	08	
earning system, , neutral grounding(system Grounding), Types (or Grounding,		
Unit 5	a15.			
REVIEW OF IF DUI ES AND ACT	S AND THEIR SIGNIFICAN	NCE		
Objective and scope $-\sigma$ round clears	ances and section clearances	standards on	07	
electrical safety, safe limits of curre	ent, voltage, Rules regarding	first aid and		

firefighting facility. The Electricity Act, 2003, (Part1, 2, 3,4 & 5)

Course outcomes:

On completion of the course student will be able to:

- 1. Explain the objectives and precautions of Electrical Safety, effects of Shocks and their Prevention.
- 2. Summarize the Safety aspects during Installation of Plant and Equipment.
- **3.** Describe the electrical safety in residential, commercial and agricultural installations.
- **4.** Describe the various Electrical Safety in Hazardous Areas, Equipment Earthing and System Neutral Earthing.
- 5. State the electrical systems IE rules.

Question paper pattern:

The question paper will have 10 questions.

- 3. Each full question carries 14 marks.
- 4. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. S. Rao, Prof. H.L. Saluja, "Electrical safety, fire safety Engineering and safety management", Khanna Publishers. New Delhi
- 2. www.apeasternpower.com/downloads/elecact

Reference Books:

1. Pradeep Chaturvedi, "Energy management policy, planning and utilization", Concept Publishing company, New Delhi